Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps
Guanghu He , Huang Luo , Chuanfang Yan , Yuting Wan , Dang Wu , Hang Luo , Yuan Liu , Sheng Chen
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12577
Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps
How to achieve synergistic improvement of permittivity (εr) and breakdown strength (Eb) is a huge challenge for polymer dielectrics. Here, for the first time, the π-conjugated comonomer (MHT) can simultaneously promote the εr and Eb of linear poly(methyl methacrylate) (PMMA) copolymers. The PMMA-based random copolymer films (P(MMA-co-MHT)), block copolymer films (PMMA-b-PMHT), and PMMA-based blend films were prepared to investigate the effects of sequential structure, phase separation structure, and modification method on dielectric and energy storage properties of PMMA-based dielectric films. As a result, the random copolymer P(MMA-co-MHT) can achieve a maximum εr of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization. Because electron injection and charge transfer are limited by the strong electrostatic attraction of π-conjugated benzophenanthrene group analyzed by the density functional theory (DFT), the discharge energy density value of P(MMA-co-PMHT) containing 1 mol% MHT units with the efficiency of 80% reaches 15.00 J cm-3 at 872 MV m-1, which is 165% higher than that of pure PMMA. This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.
dielectric capacitor / electrical properties / energy density / polymer dielectric / semiconductor polymer
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |