Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps

Guanghu He, Huang Luo, Chuanfang Yan, Yuting Wan, Dang Wu, Hang Luo, Yuan Liu, Sheng Chen

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12577. DOI: 10.1002/eem2.12577
RESEARCH ARTICLE

Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps

Author information +
History +

Abstract

How to achieve synergistic improvement of permittivity (εr) and breakdown strength (Eb) is a huge challenge for polymer dielectrics. Here, for the first time, the π-conjugated comonomer (MHT) can simultaneously promote the εr and Eb of linear poly(methyl methacrylate) (PMMA) copolymers. The PMMA-based random copolymer films (P(MMA-co-MHT)), block copolymer films (PMMA-b-PMHT), and PMMA-based blend films were prepared to investigate the effects of sequential structure, phase separation structure, and modification method on dielectric and energy storage properties of PMMA-based dielectric films. As a result, the random copolymer P(MMA-co-MHT) can achieve a maximum εr of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization. Because electron injection and charge transfer are limited by the strong electrostatic attraction of π-conjugated benzophenanthrene group analyzed by the density functional theory (DFT), the discharge energy density value of P(MMA-co-PMHT) containing 1 mol% MHT units with the efficiency of 80% reaches 15.00 J cm-3 at 872 MV m-1, which is 165% higher than that of pure PMMA. This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.

Keywords

dielectric capacitor / electrical properties / energy density / polymer dielectric / semiconductor polymer

Cite this article

Download citation ▾
Guanghu He, Huang Luo, Chuanfang Yan, Yuting Wan, Dang Wu, Hang Luo, Yuan Liu, Sheng Chen. Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps. Energy & Environmental Materials, 2024, 7(2): 12577 https://doi.org/10.1002/eem2.12577

References

[1]
J. S. Ho , S. G. Greenbaum , ACS Appl. Mater. Interfaces 2018, 10, 29189.
[2]
X. Hu , K. Yi , J. Liu , B. Chu , Energ. Technol. 2018, 6, 849.
[3]
X. Zhang , B.-W. Li , L. Dong , H. Liu , W. Chen , Y. Shen , C.-W. Nan , Adv. Mater. Interfaces 2018, 5, 1800096.
[4]
H. Luo , X. Zhou , C. Ellingford , Y. Zhang , S. Chen , K. Zhou , D. Zhang , C. R. Bowen , C. Wan , Chem. Soc. Rev. 2019, 48, 4424.
[5]
H. Li , Y. Zhou , Y. Liu , L. Li , Y. Liu , Q. Wang , Chem. Soc. Rev. 2021, 50, 6369.
[6]
H. Wu , F. Zhuo , H. Qiao , L. Kodumudi Venkataraman , M. Zheng , S. Wang , H. Huang , B. Li , X. Mao , Q. Zhang , Energy Environ. Mater. 2022, 5, 486.
[7]
B. Fan , M. Zhou , C. Zhang , D. He , J. Bai , Prog. Polym. Sci. 2019, 97, 231415.
[8]
J. Wei , L. Zhu , Prog. Polym. Sci. 2020, 106, 101254.
[9]
H. Xu , G. He , S. Chen , S. Chen , R. Qiao , H. Luo , D. Zhang , Macromolecules 2021, 54, 8195.
[10]
G. He , Z. Liu , C. Wang , S. Chen , H. Luo , D. Zhang , ACS Sustain. Chem. Eng. 2021, 9, 8156.
[11]
C. Ding , X. Tang , S. Yu , S. Chen , Z. Liu , H. Luo , D. Zhang , J. Mater. Chem. C 2022, 10, 6323.
[12]
S. Yu , C. Ding , Y. Liu , Y. Liu , Y. Zhang , H. Luo , D. Zhang , S. Chen , J. Power Sources 2022, 535, 231415.
[13]
X. Wu , X. Chen , Q. M. Zhang , D. Q. Tan , Energy Stor. Mater. 2022, 44, 29.
[14]
Q. K. Feng , S. L. Zhong , J. Y. Pei , Y. Zhao , D. L. Zhang , D. F. Liu , Y. X. Zhang , Z. M. Dang , Chem. Rev. 2022, 122, 3820.
[15]
J. Mao , S. Wang , Y. Cheng , B. Xiao , L. Zhang , D. Ai , Y. Chen , W. Sun , J. Luo , Chem. Eng. J. 2022, 444, 136331.
[16]
A. A. Deshmukh , C. Wu , O. Yassin , A. Mishra , L. Chen , A. Alamri , Z. Li , J. Zhou , Z. Mutlu , M. Sotzing , P. Rajak , S. Shukla , J. Vellek , M. A. Baferani , M. Cakmak , P. Vashishta , R. Ramprasad , Y. Cao , G. Sotzing , Energy Environ. Sci. 2022, 15, 1307.
[17]
L. Liu , K. Zhang , J. Liu , L. Zhu , R. Xie , S. Lv , React. Funct. Polym. 2022, 172, 105177.
[18]
H. Luo , S. Chen , L. Liu , X. Zhou , C. Ma , W. Liu , D. Zhang , ACS Sustain. Chem. Eng. 2018, 7, 3145.
[19]
S. Chen , X. Yan , W. Liu , R. Qiao , S. Chen , H. Luo , D. Zhang , Chem. Eng. J. 2020, 401, 126095.
[20]
Y. Yin , J. He , C. Zhang , J. Chen , J. Wu , Z. Shi , C. Xiong , Q. Yang , Cellulose 2021, 28, 1541.
[21]
Q. K. Feng , J. B. Ping , J. Zhu , J. Y. Pei , L. Huang , D. L. Zhang , Y. Zhao , S. L. Zhong , Z. M. Dang , Macromol. Rapid Commun. 2021, 42, e2100116.
[22]
A. Ahmad , H. Tong , T. Fan , J. Xu , J. Appl. Polym. Sci. 2021, 138, 50997.
[23]
R. Wang , H. Xu , S. Cheng , J. Liang , B. Gou , J. Zhou , J. Fu , C. Xie , J. He , Q. Li , Energy Stor. Mater. 2022, 49, 339.
[24]
K. Yang , W. Chen , Y. Zhao , Y. He , X. Chen , B. Du , W. Yang , S. Zhang , Y. Fu , ACS Appl. Mater. Interfaces 2021, 13, 25850.
[25]
M. Zhang , B. Zhu , X. Zhang , S. Tan , H. Gong , X. Wei , Z. Zhang , J. Mater. Chem. A 2022, 10, 16258.
[26]
Y. Su , Y. Huan , B. Peng , X. Wang , L. Wu , T. Wei , Chem. Eng. J. 2023, 452, 139316.
[27]
X. Du , Z. Li , T. Xu , J. Wang , S. Yan , L. Dong , Chem. Eng. J. 2020, 379, 122328.
[28]
C. Yuan , Y. Zhou , Y. Zhu , J. Liang , S. Wang , S. Peng , Y. Li , S. Cheng , M. Yang , J. Hu , B. Zhang , R. Zeng , J. He , Q. Li , Nat. Commun. 2020,
CrossRef Google scholar
[29]
Y. Zhang , R. Feng , Z. Chen , T. Zhao , Y. Ju , S. Yan , S. Song , G. Zhao , L. Dong , Eur. Polym. J. 2021, 152, 110486.
[30]
R. Qiao , H. Xu , S. Chen , S. Chen , H. Luo , D. Zhang , ACS Appl. Polym. Mater. 2021, 3, 879.
[31]
R. Qiao , C. Wang , S. Chen , G. He , Z. Liu , H. Luo , D. Zhang , Compos. Part A Appl. Sci. Manuf. 2022, 152, 106679.
[32]
Y. Zhang , F. Yan , S. Lao , X. Li , L. Dong , J. Mater. Sci. Mater. Electron. 2022, 33, 13850.
[33]
B. Luo , X. Wang , H. Wang , Z. Cai , L. Li , Compos. Sci. Technol. 2017, 151, 94.
[34]
X. Zhang , Y. Jiang , R. Gao , X. Li , Z. Shen , B.-W. Li , Q. Zhang , S. Zhang , C.-W. Nan , Sci. China Mater. 2021, 64, 1642.
[35]
Z. Dan , W. Ren , M. Guo , Z. Shen , T. Zhang , J. Jiang , C. Nan , Y. Shen , IET Nanodielectrics 2020, 3, 147.
[36]
Y. Jiang , J. Wang , S. Yan , Z. Shen , L. Dong , S. Zhang , X. Zhang , C. W. Nan , Adv. Funct. Mater. 2022, 32, 2200848.
[37]
F. Wen , C. Zhu , W. Lv , P. Wang , L. Zhang , L. Li , G. Wang , W. Wu , Z. Ying , X. Zheng , C. Han , W. Li , H. Zu , Z. Yue , ACS Omega 2021, 6, 35014.
[38]
S. Zhang , B. Neese , K. Ren , B. Chu , Q. M. Zhang , J. Appl. Phys. 2006, 100, 044113.
[39]
Q. Li , J. Liu , X. Zhang , S. Tan , J. Lu , Z. Zhang , Phys. Chem. Chem. Phys. 2019, 21, 15712.
[40]
H. Xu , S. Chen , S. Chen , R. Qiao , H. Li , H. Luo , D. Zhang , ACS Appl. Energy Mater. 2021, 4, 2451.
[41]
G. He , Y. Liu , C. Wang , S. Chen , H. Luo , D. Zhang , Chem. Eng. J. 2022, 446, 137106.
[42]
X. Tang , C. Din , S. Yu , Y. Liu , H. Luo , D. Zhang , S. Chen , Chem. Eng. J. 2022, 446, 137281.
[43]
K. Qian , R. Qiao , S. Chen , H. Luo , D. Zhang , J. Mater. Chem. C 2020, 8, 8440.
[44]
X.-H. Han , X.-W. Yang , S. Chen , H. Luo , D. Zhang , H.-L. Zhang , Chinese J. Polym. Sci. 2018, 36, 960.
[45]
Q. Li , S. Tan , H. Gong , J. Lu , W. Zhang , X. Zhang , Z. Zhang , Phys. Chem. Chem. Phys. 2021, 23, 3856.
[46]
C. Yuan , Y. Zhou , Y. Zhu , S. Hu , J. Liang , Z. Luo , B. Gao , T. Zeng , Y. Zhang , J. Li , S. Huang , Z. Han , X. Yang , Y. Yang , P. Meng , J. Hu , J. He , H. Yuan , Q. Li , ACS Sustain. Chem. Eng. 2022, 10, 8685.
[47]
J. Wei , Z. Zhang , J. K. Tseng , I. Treufeld , X. Liu , M. H. Litt , L. Zhu , ACS Appl. Mater. Interfaces 2015, 7, 5248.
[48]
B. Yang , P. Qu , X. Peng , X. Liu , Polym. Plast. Technol. Mat. 2018, 58, 1245.
[49]
J. Wei , T. Ju , W. Huang , J. Song , N. Yan , F. Wang , A. Shen , Z. Li , L. Zhu , Polymer 2019, 178, 121688.
[50]
Y. Zhu , C. Ma , H. Han , R. Sun , X. Liao , M. Xie , Polym. Chem. 2019, 10, 2447.
[51]
Y. Zhu , F. Ma , C. Ma , H. Han , R. Sun , H. Peng , M. Xie , Polymer 2019, 184, 121886.
[52]
F. Wen , L. Zhang , P. Wang , L. Li , J. Chen , C. Chen , W. Wu , G. Wang , S. Zhang , J. Mater. Chem. A 2020, 8, 15122.
[53]
J. Gong , C. Ma , Y. Quan , R. Sun , X. Liao , H. Peng , M. Xie , Polymer 2021, 231, 124127.
[54]
Y. Han , M. Shen , Y. Xu , L. Yang , Y. Xue , W. Tao , J. Mater. Sci. Mater. Electron. 2021, 32, 6249.
[55]
L.-J. Zhang , J. Liu , L.-B. Luo , X.-Y. Liu , X. Wang , Polymer 2022, 245, 124702.
[56]
R. Zhang , L. Li , S. Long , P. Wang , F. Wen , J. Yang , G. Wang , J. Mater. Chem. C 2022, 10, 3480.
[57]
W. Zheng , T. Yang , L. Qu , X. Liang , C. Liu , C. Qian , T. Zhu , Z. Zhou , C. Liu , S. Liu , Z. Chi , J. Xu , Y. Zhang , Chem. Eng. J. 2022, 436, 135060.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/