Lithium-Metal Free Sulfur Battery Based on Waste Biomass Anode and Nano-Sized Li2S Cathode
Pejman Salimi, Eleonora Venezia, Somayeh Taghavi, Sebastiano Tieuli, Lorenzo Carbone, Mirko Prato, Michela Signoretto, Jianfeng Qiu, Remo Proietti Zaccaria
Lithium-Metal Free Sulfur Battery Based on Waste Biomass Anode and Nano-Sized Li2S Cathode
The realization of a stable lithium-metal free (LiMF) sulfur battery based on amorphous carbon anode and lithium sulfide (Li2S) cathode is here reported. In particular, a biomass waste originating full-cell combining a carbonized brewer's spent grain (CBSG) biochar anode with a Li2S-graphene composite cathode (Li2S70Gr30) is proposed. This design is particularly attractive for applying a cost-effective, high performance, environment friendly, and safe anode material, as an alternative to standard graphite and metallic lithium in emerging battery technologies. The anodic and cathodic materials are characterized in terms of structure, morphology and composition through X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. Furthermore, an electrochemical characterization comprising galvanostatic cycling, rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations. The systematic investigation reveals that unlike graphite, the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries. The CBSG/Li2S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g-1, respectively, at 0.05C with a coulombic efficiency of 74%. Moreover, it discloses a reversible capacity of 330 mAh g-1 (0.1C) after over 300 cycles. Based on these achievements, the CBSG/Li2S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles (EVs), especially when taking into account its easy scalability to an industrial level.
biochars / ether-based electrolytes / lithium sulfide / lithium-metal free batteries / superior cycling stability
[1] |
Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 2018, 3, 279.
|
[2] |
L. Canals Casals, E. Martinez-Laserna, B. Amante García, N. Nieto, J. Clean. Prod. 2016, 127, 425.
|
[3] |
A. Moro, L. Lonza, Transp. Res. Part D Transp. Environ. 2018, 64, 5.
|
[4] |
S. Javadian, Z. Parviz, P. Salimi, M. Nasrollahpour, H. Gharibi, H. Kashani, A. Morsali, R. P. Zaccaria, J. Alloys Compd. 2022, 898, 162849.
|
[5] |
S. Javadian, P. Salimi, H. Gharibi, A. Fathollahi, E. Kowsari, J. Kakemam, J. Iran. Chem. Soc. 2019, 16, 2123.
|
[6] |
W. Li, R. Long, H. Chen, J. Geng, Renew. Sust. Energ. Rev. 2017, 78, 318.
|
[7] |
D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, X. Xu, L. Fan, N. Zhang, Energy Environ. Mater. 2021,
CrossRef
Google scholar
|
[8] |
J. Hassoun, B. Scrosati, Angew. Chemie 2010, 122, 2421.
|
[9] |
Z. H. Chen, X. L. Du, J. B. He, F. Li, Y. Wang, Y. L. Li, B. Li, S. Xin, ACS Appl. Mater. Interfaces 2017, 9, 33855.
|
[10] |
W. J. Chen, C. X. Zhao, B. Q. Li, Q. Jin, X. Q. Zhang, T. Q. Yuan, X. Zhang, Z. Jin, S. Kaskel, Q. Zhang, Energy Environ. Mater. 2020, 3, 160.
|
[11] |
F. Xu, X. Li, F. Xiao, S. Xu, X. Zhang, P. He, H. Zhou, Mater. Technol. 2016, 31, 517.
|
[12] |
J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov, H. Liu, J. Wang, Small 2019,
CrossRef
Google scholar
|
[13] |
L. Carbone, J. Peng, M. Agostini, M. Gobet, M. Devany, B. Scrosati, S. Greenbaum, J. Hassoun, ChemElectroChem 2017, 4, 209.
|
[14] |
E. Venezia, P. Salimi, S. Chauque, R. Proietti Zaccaria, Nanomaterials 2022, 12, 3933.
|
[15] |
D. Su, D. Zhou, C. Wang, G. Wang, Adv. Funct. Mater. 2018,
CrossRef
Google scholar
|
[16] |
A. Manthiram, Y. Fu, S. Chung, C. Zu, Y. Su,
|
[17] |
H. Jha, I. Buchberger, X. Cui, S. Meini, H. A. Gasteiger, J. Electrochem. Soc. 2015, 162, A1829.
|
[18] |
Z. Li, Y. Kamei, M. Haruta, T. Takenaka, A. Tomita, T. Doi, S. Zhang, K. Dokko, M. Inaba, M. Watanabe, Electrochemistry 2016, 84, 887.
|
[19] |
G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D. J. Miller, L. A. Curtiss, X. Ji, K. Amine, Nat. Energy 2017,
CrossRef
Google scholar
|
[20] |
G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Adv. Energy Mater. 2016,
CrossRef
Google scholar
|
[21] |
H. El-Shinawi, E. J. Cussen, S. A. Corr, Nanoscale 2019, 11, 19297.
|
[22] |
A. Hayashi, R. Ohtsubo, M. Tatsumisago, Solid State Ion. 2008, 179, 1702.
|
[23] |
L. Zhou, W. Zhang, Y. Wang, S. Liang, Y. Gan, H. Huang, J. Zhang, Y. Xia, C. Liang, J. Chem. 2020, 2020, 6904517.
|
[24] |
M. R. Kaiser, Z. Han, J. Liang, S. X. Dou, J. Wang, Energy Storage Mater. 2019,
CrossRef
Google scholar
|
[25] |
K. Zhang, L. Wang, Z. Hu, F. Cheng, J. Chen, Sci. Rep. 2014,
CrossRef
Google scholar
|
[26] |
Y. Li, S. Guo, Matter 2021, 4, 1142.
|
[27] |
Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, Y. Cui, J. Am. Chem. Soc. 2012, 134, 15387.
|
[28] |
F. Ye, H. Noh, H. Lee, H. T. Kim, Adv. Sci. 2018,
CrossRef
Google scholar
|
[29] |
Y. Chen, S. Lu, Y. Li, W. Qin, X. Wu, Mater. Lett. 2019, 248, 157.
|
[30] |
Z. Wang, N. Zhang, M. Yu, J. Liu, S. Wang, J. Qiu, J. Energy Chem. 2019, 37, 183.
|
[31] |
J. Hassoun, B. Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371.
|
[32] |
S. Wang, H. Chen, Z. Zhong, X. Hou, S. Hu, J. Wu, Ionics (Kiel). 2018, 24, 3385.
|
[33] |
S. S. J. Aravind, V. Eswaraiah, S. Ramaprabhu, J. Mater. Chem. 2011, 21, 17094.
|
[34] |
E. V. Soares, H. M. V. M. Soares, Appl. Microbiol. Biotechnol. 2021, 105, 1379.
|
[35] |
A. Manuja, B. Kumar, R. Kumar, D. Chhabra, M. Ghosh, M. Manuja, B. Brar, Y. Pal, B. N. Tripathi, M. Prasad, Toxicol. Rep. 1970, 2021, 8.
|
[36] |
P. Zeng, Y. Han, X. Duan, G. Jia, L. Huang, Y. Chen, Mater. Res. Bull. 2017, 95, 61.
|
[37] |
D. Lv, P. Yan, Y. Shao, Q. Li, S. Ferrara, H. Pan, G. L. Graff, B. Polzin, C. Wang, J. G. Zhang, J. Liu, J. Xiao, Chem. Commun. 2015, 51, 13454.
|
[38] |
X. Li, J. Liang, W. Li, J. Luo, X. Le, X. Yang, Y. Hu, Q. Xiao, W. Zhang, R. Li, T. K. Sham, X. Sun, Chem. Mater. 2019, 31, 2002.
|
[39] |
R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2022, 5, 777.
|
[40] |
F. Yu, S. Li, W. Chen, T. Wu, C. Peng, Energy Environ. Mater. 2019, 2, 55.
|
[41] |
O. Norouzi, P. Salimi, F. Di Maria, S. Pourhosseini, F. Safari, in Production of Materials from Sustainable Biomass Resources (Eds: Z. Fang, R. Smith, Jr, Tian, X. F., Springer, Singapore 2019, pp. 233- 265.
|
[42] |
P. Salimi, O. Norouzi, S. E. M. Pourhosseini, J. Alloys Compd. 2019, 786, 930.
|
[43] |
S. E. M. Pourhosseini, O. Norouzi, P. Salimi, H. R. Naderi, ACS Sustain. Chem. Eng. 2018, 6, 4746.
|
[44] |
F. Luna-Lama, D. Rodríguez-Padrón, A. R. Puente-Santiago, M. J. Muñoz-Batista, A. Caballero, A. M. Balu, A. A. Romero, R. Luque, J. Clean. Prod. 2019, 207, 411.
|
[45] |
S. Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, Y. Zhao, Adv. Funct. Mater. 2018,
CrossRef
Google scholar
|
[46] |
H. Shan, X. Li, Y. Cui, D. Xiong, B. Yan, D. Li, A. Lushington, X. Sun, Electrochim. Acta 2016, 205, 188.
|
[47] |
W. Yu, H. Wang, S. Liu, N. Mao, X. Liu, J. Shi, W. Liu, S. Chen, X. Wang, J. Mater. Chem. A 2016, 4, 5973.
|
[48] |
J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H. T. Grossmann, P. Stru-bel, H. Althues, S. Spange, S. Kaskel, Adv. Funct. Mater. 2014, 24, 1284.
|
[49] |
M. Lu, W. Yu, J. Shi, W. Liu, S. Chen, X. Wang, H. Wang, Electrochim. Acta 2017, 251, 396.
|
[50] |
J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, Science (80-.) 1995, 270, 590.
|
[51] |
X. Lian, Z. Sun, Q. Mei, Y. Yi, J. Zhou, M. H. Rümmeli, J. Sun, Energy Environ. Mater. 2022, 5, 344.
|
[52] |
P. Salimi, S. Javadian, O. Norouzi, H. Gharibi, Environ. Sci. Pollut. Res. 2017, 24, 27974.
|
[53] |
P. Salimi, S. Tieuli, S. Taghavi, E. Venezia, S. Fugattini, S. Lauciello, M. Prato, S. Marras, T. Li, M. Signoretto, P. Costamagna, R. Proietti Zaccaria, Green Chem. 2022, 24, 4119.
|
[54] |
J. Tu, L. Hu, S. Jiao, J. Hou, H. Zhu, Phys. Chem. Chem. Phys. 2013, 15, 18549.
|
[55] |
S. Wacharasindhu, S. Likitmaskul, L. Punnakanta, K. Chaichanwatanakul, K. Angsusingha, C. Tuchinda, J. Med. Assoc. Thai. 1998, 81, 420.
|
[56] |
M. Gao, K. Zou, Y. Deng, Z. Zhao, Y. Li, G. Chen, ACS Appl. Mater. Interfaces 2017, 9, 28527.
|
[57] |
W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 2626.
|
[58] |
Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. S. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A 2015, 3, 71.
|
[59] |
L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum, J. Hassoun, J. Power Sources 2015, 299, 460.
|
[60] |
X. Zhang, C. Fan, P. Xiao, S. Han, Electrochim. Acta 2016, 222, 221.
|
[61] |
P. Salimi, E. Kowsari, J. Electron. Mater. 2019, 48, 2254.
|
[62] |
D. I. Lee, H.-W. Yang, W. S. Kang, J. Kim, S.-J. Kim, J. Electrochem. Soc. 2019, 166, A787.
|
[63] |
S. Thieme, J. Brückner, A. Meier, I. Bauer, K. Gruber, J. Kaspar, A. Helmer, H. Althues, M. Schmuck, S. Kaskel, J. Mater. Chem. A 2015, 3, 3808.
|
[64] |
M. Agostini, J. Hassoun, J. Liu, M. Jeong, H. Nara, T. Momma, T. Osaka, Y. K. Sun, B. Scrosati, ACS Appl. Mater. Interfaces 2014, 6, 10924.
|
[65] |
T. Takeuchi, H. Kageyama, K. Nakanishi, T. Ohta, A. Sakuda, T. Sakai, H. Kobayashi, H. Sakaebe, K. Tatsumi, Z. Ogumi, Solid State Ion. 2014, 262, 138.
|
[66] |
N. Wang, N. Zhao, C. Shi, E. Liu, C. He, F. He, L. Ma, Electrochim. Acta 2017, 256, 348.
|
[67] |
R. K. Bhardwaj, H. Lahan, V. Sekkar, B. John, A. J. Bhattacharyya, ACS Sustain. Chem. Eng. 2022, 10, 410.
|
[68] |
J. Zhang, J. Wang, M. Qian, B. Zhao, R. Wang, X. Hao, X. Huang, R. Shao, Z. Xing, J. Xie, B. Xu, Y. Su, F. Wu, G. Tan, Adv. Funct. Mater. 2022, 32, 1.
|
[69] |
L. Jin, C. Shen, Q. Wu, A. Shellikeri, J. Zheng, C. Zhang, J. P. Zheng, Adv. Sci. 2021,
CrossRef
Google scholar
|
/
〈 | 〉 |