Atomically Adjustable Rhodium Catalyst Synthesis with Outstanding Mass Activity via Surface-Limited Cation Exchange

Hak Hyeon Lee, Dong Su Kim, Swagotom Sarker, Ji Hoon Choi, Ho Seong Lee, Hyung Koun Cho

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12556. DOI: 10.1002/eem2.12556
RESEARCH ARTICLE

Atomically Adjustable Rhodium Catalyst Synthesis with Outstanding Mass Activity via Surface-Limited Cation Exchange

Author information +
History +

Abstract

Rh has been widely studied as a catalyst for the promising hydrazine oxidation reaction that can replace oxygen evolution reactions for boosting hydrogen production from hydrazine-containing wastewater. Despite Rh being expensive, only a few studies have examined its electrocatalytic mass activity. Herein, surface-limited cation exchange and electrochemical activation processes are designed to remarkably enhance the mass activity of Rh. Rh atoms were readily replaced at the Ni sites on the surface of NiOOH electrodes by cation exchange, and the resulting RhOOH compounds were activated by the electrochemical reduction process. The cation exchange-derived Rh catalysts exhibited particle sizes not exceeding 2 nm without agglomeration, indicating a decrease in the number of inactive inner Rh atoms. Consequently, an improved mass activity of 30 A mgRh-1 was achieved at 0.4 V versus reversible hydrogen electrode. Furthermore, the two-electrode system employing the same CE-derived Rh electrodes achieved overall hydrazine splitting over 36 h at a stable low voltage. The proposed surface-limited CE process is an effective method for reducing inactive atoms of expensive noble metal catalysts.

Keywords

cation exchange synthesis / electrochemical metallization / hydrazine oxidation reaction / mass activity / rhodium catalyst

Cite this article

Download citation ▾
Hak Hyeon Lee, Dong Su Kim, Swagotom Sarker, Ji Hoon Choi, Ho Seong Lee, Hyung Koun Cho. Atomically Adjustable Rhodium Catalyst Synthesis with Outstanding Mass Activity via Surface-Limited Cation Exchange. Energy & Environmental Materials, 2024, 7(2): 12556 https://doi.org/10.1002/eem2.12556

References

[1]
S. Y. Tee , K. Y. Win , W. S. Teo , L. D. Koh , S. Liu , C. P. Teng , M. Y. Han , Adv. Sci. 2017, 4, 1600337.
[2]
J. Qi , W. Zhang , R. Cao , Adv. Energy Mater. 2018, 8, 1701620.
[3]
J. Liang , X. Han , Y. Qiu , Q. Fang , B. Zhang , W. Wang , J. Zhang , P. M. Ajayan , J. Lou , ACS Nano 2020, 14, 5426.
[4]
M. Wang , Z. Wan , X. Meng , Z. Li , X. Ding , P. Li , C. Li , J.-G. Wang , Z. Li , Appl. Catal. Environ. 2022, 309, 121272.
[5]
Z. W. Seh , J. Kibsgaard , C. F. Dickens , I. Chorkendorff , J. K. Norskov , T. F. Jaramillo , Science 2017, 355, 6321.
[6]
P. De Luna , C. Hahn , D. Higgins , S. A. Jaffer , T. F. Jaramillo , E. H. Sargent , Science 2019, 364, 6438.
[7]
Y. Li , Y. Sun , Y. Qin , W. Zhang , L. Wang , M. Luo , H. Yang , S. Guo , Adv. Energy Mater. 2020, 10, 1903120.
[8]
B. Tang , X. Yang , Z. Kang , L. Feng , Appl. Catal. Environ. 2020, 278, 119281.
[9]
M. Wang , L. Zhang , Y. He , H. Zhu , J. Mater. Chem. A 2021, 9, 5320.
[10]
F. Zheng , W. Zhang , X. Zhang , Y. Zhang , W. Chen , Adv. Funct. Mater. 2021, 31, 2103318.
[11]
J. Gu , Y. Peng , T. Zhou , J. Ma , H. Pang , Y. Yamauchi , Nano Res Energy 2022, 1, e9120009.
[12]
C. Du , P. Li , Z. Zhuang , Z. Fang , S. He , L. Feng , W. Chen , Coord. Chem. Rev. 2022, 466, 214604.
[13]
S. L. Fereja , P. Li , Z. Zhang , J. Guo , Z. Fang , Z. Li , S. He , W. Chen , Chem. Eng. J. 2022, 432, 134274.
[14]
G. Ma , X. Zhang , G. Zhou , X. Wang , Chem. Eng. J. 2021, 411, 128292.
[15]
J. R. Barbosa , M. N. Leon , C. M. Fernandes , R. M. Antoniassi , O. C. Alves , E. A. Ponzio , J. C. M. Silva , Appl. Catal. Environ. 2020, 264, 118458.
[16]
G. Wang , S. Jing , Y. Tan , Sci. Rep. 2017, 7, 16465.
[17]
T. Asset , A. Roy , T. Sakamoto , M. Padilla , I. Matanovic , K. Artyushkova , A. Serov , F. Maillard , M. Chatenet , K. Asazawa , H. Tanaka , P. Atanassov , Electrochim. Acta 2016, 215, 420.
[18]
X.-Y. Zhang , Y.-S. Yang , W. Wang , Q.-C. Jiao , H.-L. Zhu , Coord. Chem. Rev. 2020, 417, 213367.
[19]
J. K. Niemeier , D. P. Kjell , Org. Process Res. Dev. 2013, 17, 1580.
[20]
J. Li , Y. Li , J. Wang , C. Zhang , H. Ma , C. Zhu , D. Fan , Z. Guo , M. Xu , Y. Wang , H. Ma , Adv. Funct. Mater. 2022, 32, 2109439.
[21]
D. C. de Oliveira , W. O. Silva , M. Chatenet , F. H. B. Lima , Appl. Catal. Environ. 2017, 201, 22.
[22]
M. Zhang , Z. Wang , Z. Duan , S. Wang , Y. Xu , X. Li , L. Wang , H. Wang , J. Mater. Chem. A 2021, 9, 18323.
[23]
D. A. Finkelstein , R. Imbeault , S. Garbarino , L. Roué , D. Guay , J. Phys. Chem. C 2016, 120, 4717.
[24]
N. Jia , Y. Liu , L. Wang , P. Chen , X. Chen , Z. An , Y. Chen , A. C. S. Appl , Mater. Interfaces 2019, 11, 35039.
[25]
K. Deng , Q. Mao , W. Wang , P. Wang , Z. Wang , Y. Xu , X. Li , H. Wang , L. Wang , Appl. Catal. Environ. 2022, 310, 121338.
[26]
Q. Xue , H. Huang , J.-Y. Zhu , Y. Zhao , F.-M. Li , P. Chen , Y. Chen , Appl. Catal. Environ. 2020, 278, 119269.
[27]
J. Yang , L. Xu , W. Zhu , M. Xie , F. Liao , T. Cheng , Z. Kang , M. Shao , J. Mater. Chem. A 2022, 10, 1891.
[28]
N. K. Oh , J. Seo , S. Lee , H. J. Kim , U. Kim , J. Lee , Y. K. Han , H. Park , Nat. Commun. 2021, 12, 4606.
[29]
B. J. Beberwyck , Y. Surendranath , A. P. Alivisatos , J. Phys. Chem. C 2013, 117, 19759.
[30]
J. B. Rivest , P. K. Jain , Chem. Soc. Rev. 2013, 42, 89.
[31]
H. Li , M. Zanella , A. Genovese , M. Povia , A. Falqui , C. Giannini , L. Manna , Nano Lett. 2011, 11, 4964.
[32]
M. Casavola , M. A. van Huis , S. Bals , K. Lambert , Z. Hens , D. Vanmaekelbergh , Chem. Mater. 2011, 24, 294.
[33]
J. Zhang , S. Li , R. Hu , B. Yuan , Ionics 2021, 27, 2053.
[34]
Q. Zhou , Q. Shi , N. Li , D. Chen , Q. Xu , H. Li , J. He , J. Lu , Environ. Sci. Nano 2020, 7, 2267.
[35]
G. Oskam , J. Long , A. Natarajan , P. Searson , J. Phys. D Appl. Phys. 1998, 31, 1927.
[36]
X. Liu , K. Ni , B. Wen , R. Guo , C. Niu , J. Meng , Q. Li , P. Wu , Y. Zhu , X. Wu , L. Mai , ACS Energy Lett. 2019, 4, 2585.
[37]
X. Liu , F. Xia , R. Guo , M. Huang , J. Meng , J. Wu , L. Mai , Adv. Funct. Mater. 2021, 31, 2101792.
[38]
S. Bai , M. Xie , T. Cheng , K. Cao , Y. Xu , X. Huang , Nano Energy 2020, 78, 105224.
[39]
A. Suzuki , High Pressure Res. 2018, 38, 145.
[40]
K. Elouarzaki , A. Le Goff , M. Holzinger , J. Thery , S. Cosnier , J. Am. Chem. Soc. 2012, 134, 14078.
[41]
Y. Jin , S. Huang , X. Yue , H. Du , P. K. Shen , ACS Catal. 2018, 8, 2359.
[42]
L. Shen , M. Fan , M. Qiu , W. Jiang , Z. Wang , Appl. Surf. Sci. 2019, 483, 706.
[43]
L. S. Kibis , A. I. Stadnichenko , S. V. Koscheev , V. I. Zaikovskii , A. I. Boronin , J. Phys. Chem. C 2016, 120, 19142.
[44]
L. Wang , W. Zhang , S. Wang , Z. Gao , Z. Luo , X. Wang , R. Zeng , A. Li , H. Li , M. Wang , X. Zheng , J. Zhu , W. Zhang , C. Ma , R. Si , J. Zeng , Nat. Commun. 2016, 7, 14036.
[45]
S. Luo , L. Zhang , Y. Liao , L. Li , Q. Yang , X. Wu , X. Wu , D. He , C. He , W. Chen , Q. Wu , M. Li , E. J. M. Hensen , Z. Quan , Adv. Mater. 2021, 33, 2008508.
[46]
Y. Zhou , W. Hao , X. Zhao , J. Zhao , H. Yu , B. Lin , Z. Liu , S. J. Pennycook , S. Li , H. J. Fan , Adv. Mater. 2022, 34, e2100537.
[47]
M. Łukaszewski , Int. J. Electrochem. Sci. 2016, 11, 4442.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/