
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes
Kwadwo Asare Owusu, Zhaoyang Wang, Ali Saad, Felix Ofori Boakye, Muhammad Asim Mushtaq, Muhammad Tahir, Ghulam Yasin, Dongqing Liu, Zhengchun Peng, Xingke Cai
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12545.
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors. Herein, we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate, which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature. Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH, the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm-2 as cathode and anode at 2 mA cm-2, and 79.5% and 80% capacity have been preserved at 50 mA cm-2. In the meantime, they all showed excellent cycling performance with negligible change after >10 000 cycles. By fabricating them into an asymmetric supercapacitor, the device achieves high energy densities (5.61 mWh cm-2 and 0.352 mW cm-3). This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
amorphous nanosheets / aqueous supercapacitor / high volumetric/areal energy density / NiCo-LDH / room temperature synthesis
[1] |
J. García-Martínez , Nanotechnology for the Energy Challenge, Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim, Germany 2013.
|
[2] |
Y. Gogotsi , Nature 2014, 509, 568.
|
[3] |
S. Chu , A. Majumdar , Nature 2012, 488, 294.
|
[4] |
M. Winter , R. J. Brodd , Chem. Rev. 2004, 104, 4245.
|
[5] |
M. Armand , J.-M. Tarascon , Nature 2008, 451, 652.
|
[6] |
S. Wang , D. Liu , X. Cai , L. Zhang , Y. Liu , X. Qin , R. Zhao , X. Zeng , C. Han , C. Zhan , F. Kang , B. Li , Nano Energy 2021, 90, 106510.
|
[7] |
X. Zeng , D. Liu , S. Wang , S. Liu , X. Cai , L. Zhang , R. Zhao , B. Li , F. Kang , A. C. S. Appl , Mater. Interfaces 2020, 12, 37047.
|
[8] |
J. Ding , W. Hu , E. Paek , D. Mitlin , Chem. Rev. 2018, 118, 6457.
|
[9] |
Y. Shao , M. F. El-Kady , J. Sun , Y. Li , Q. Zhang , M. Zhu , H. Wang , B. Dunn , R. B. Kaner , Chem. Rev. 2018, 118, 9233.
|
[10] |
C. F. Liu , Y. C. Liu , T. Y. Yi , C. C. Hu , Carbon 2019, 145, 529.
|
[11] |
J. Chen , M. Chen , W. Zhou , X. Xu , B. Liu , W. Zhang , C. Wong , ACS Nano 2022, 16, 2461.
|
[12] |
N. Choudhary , C. Li , J. Moore , N. Nagaiah , L. Zhai , Y. Jung , J. Thomas , Adv. Mater. 2017, 29, 1605336.
|
[13] |
G. G. Amatucci , F. Badway , A. du Pasquier , T. Zheng , J. Electrochem. Soc. 2001, 148, A930.
|
[14] |
K. A. Owusu , L. Qu , J. Li , Z. Wang , K. Zhao , C. Yang , K. M. Hercule , C. Lin , C. Shi , Q. Wei , L. Zhou , L. Mai , Nat. Commun. 2017, 8, 14264.
|
[15] |
Y.-J. Gu , W. Wen , J.-M. Wu , J. Power Sources 2020, 469, 228425.
|
[16] |
N. Jabeen , A. Hussain , Q. Xia , S. Sun , J. Zhu , H. Xia , Adv. Mater. 2017, 29, 1700804.
|
[17] |
W. Su , F. Wu , L. Fang , J. Hu , L. Liu , T. Guan , X. Long , H. Luo , M. Zhou , J. Alloys Compd. 2019, 799, 15.
|
[18] |
K. Qin , L. Wang , S. Wen , L. Diao , P. Liu , J. Li , L. Ma , C. Shi , C. Zhong , W. Hu , E. Liu , N. Zhao , J. Mater. Chem. A 2018, 6, 8109.
|
[19] |
X. Han , J. Li , J. Lu , S. Luo , J. Wan , B. Li , C. Hu , X. Cheng , Nano Energy 2021, 86, 106079.
|
[20] |
Q. Li , Y. Xu , S. Zheng , X. Guo , H. Xue , H. Pang , Small 2018, 14, 1800426.
|
[21] |
P. Geng , L. Wang , M. Du , Y. Bai , W. Li , Y. Liu , S. Chen , P. Braunstein , Q. Xu , H. Pang , Adv. Mater. 2022, 34, 2107836.
|
[22] |
W. Li , X. Guo , P. Geng , M. Du , Q. Jing , X. Chen , G. Zhang , H. Li , Q. Xu , P. Braunstein , H. Pang , Adv. Mater. 2021, 33, 2105163.
|
[23] |
S. Zheng , Q. Li , H. Xue , H. Pang , Q. Xu , Nat. Sci. Rev. 2020, 7, 305.
|
[24] |
T. Wang , Z. Kou , S. Mu , J. Liu , D. He , I. S. Amiinu , W. Meng , K. Zhou , Z. Luo , S. Chaemchuen , F. Verpoort , Adv. Funct. Mater. 2018, 28, 1705048.
|
[25] |
J. Zhang , T. Zhang , D. Yu , K. Xiao , Y. Hong , CrstEngComm 2015, 17, 8212.
|
[26] |
T. Guan , L. Fang , L. Liu , F. Wu , Y. Lu , H. Luo , J. Hu , B. Hu , M. Zhou , J. Alloys Compd. 2019, 799, 521.
|
[27] |
Y. Guo , X. Hong , Y. Wang , Q. Li , J. Meng , R. Dai , X. Liu , L. He , L. Mai , Adv. Funct. Mater. 2019, 29, 1809004.
|
[28] |
X. Li , H. Wu , C. Guan , A. M. Elshahawy , Y. Dong , S. J. Pennycook , J. Wang , Small 2019, 15, 1803895.
|
[29] |
Y. Sun , H. Xu , X. Zhao , Z. Hui , C. Yu , L. Wang , J. Xue , Y. Zhao , R. Zhou , H. Dai , J. Mater. Chem. B 2019, 7, 6232.
|
[30] |
K. A. Owusu , Z. Wang , L. Qu , Z. Liu , J. A.-A. Mehrez , Q. Wei , L. Zhou , L. Mai , Chin. Chem. Lett. 2020, 31, 1620.
|
[31] |
N. S. McIntyre , M. G. Cook , Anal. Chem. 2002, 47, 2208.
|
[32] |
Z. Lv , Q. Zhong , Y. Bu , Adv. Mater. Interfaces 2018, 5, 1800438.
|
[33] |
B. Li , P. Gu , Y. Feng , G. Zhang , K. Huang , H. Xue , H. Pang , Adv. Funct. Mater. 2017, 27, 1605784.
|
[34] |
H. Liang , J. Lin , H. Jia , S. Chen , J. Qi , J. Cao , T. Lin , W. Fei , J. Feng , J. Power Sources 2018, 378, 248.
|
[35] |
J. Yang , C. Yu , C. Hu , M. Wang , S. Li , H. Huang , K. Bustillo , X. Han , C. Zhao , W. Guo , Adv. Funct. Mater. 2018, 28, 1803272.
|
[36] |
J. Yang , C. Yu , X. Fan , Z. Ling , J. Qiu , Y. Gogotsi , J. Mater. Chem. A 2013, 1, 1963.
|
[37] |
G. Yilmaz , K. M. Yam , C. Zhang , H. J. Fan , G. W. Ho , Adv. Mater. 2017, 29, 1606814.
|
[38] |
L. Gao , J. U. Surjadi , K. Cao , H. Zhang , P. Li , S. Xu , C. Jiang , J. Song , D. Sun , Y. Lu , A. C. S. Appl , Mater. Interfaces 2017, 9, 5409.
|
[39] |
F. Zhu , W. Liu , Y. Liu , W. Shi , Chem. Eng. J. 2020, 383, 123150.
|
[40] |
X. Wu , Y. Ru , Y. Bai , G. Zhang , Y. Shi , H. Pang , Coord. Chem. Rev. 2022, 451, 214260.
|
[41] |
J. Zhang , K. Xiao , T. Zhang , G. Qian , Y. Wang , Y. Feng , Electrochim. Acta 2017, 226, 113.
|
[42] |
Y. He , X. Zhang , J. Wang , Y. Sui , J. Qi , Z. Chen , P. Zhang , C. Chen , W. Liu , Adv. Mater. Interfaces 2021, 8, 2100642.
|
[43] |
Z. Jiang , Z. Li , Z. Qin , H. Sun , X. Jiao , D. Chen , Nanoscale 2013, 5, 11770.
|
[44] |
J. Wang , Y. Wei , J. Yu , Appl. Clay Sci. 2013, 72, 37.
|
[45] |
L. Wei , H. E. Karahan , S. Zhai , H. Liu , X. Chen , Z. Zhou , Y. Lei , Z. Liu , Adv. Mater. 2017, 29, 1701410.
|
[46] |
Y. Liu , Y. Wang , C. Shi , Y. Chen , D. Li , Z. He , C. Wang , L. Guo , J. Ma , Carbon 2020, 165, 129.
|
[47] |
Y. Liu , X. Teng , Y. Mi , Z. Chen , J. Mater. Chem. A 2017, 5, 24407.
|
[48] |
C. Guan , X. Liu , W. Ren , X. Li , C. Cheng , J. Wang , Adv. Energy Mater. 2017, 7, 1602391.
|
[49] |
J. H. Lee , H. J. Lee , S. Y. Lim , K. H. Chae , S. H. Park , K. Y. Chung , E. Deniz , J. W. Choi , Adv. Funct. Mater. 2017, 27, 1605225.
|
[50] |
H. Lindström , S. Södergren , A. Solbrand , H. Rensmo , J. Hjelm , A. Hag-feldt , S.-E. Lindquist , J. Phys. Chem. B 1997, 101, 7717.
|
[51] |
Y. Jiang , L. Zhang , H. Zhang , C. Zhang , S. Liu , J. Power Sources 2016, 329, 473.
|
[52] |
Z.-H. Huang , F.-F. Sun , M. Batmunkh , W.-H. Li , H. Li , Y. Sun , Q. Zhao , X. Liu , T.-Y. Ma , J. Mater. Chem. A 2019, 7, 11826.
|
[53] |
X. Zheng , H. Quan , X. Li , H. He , Q. Ye , X. Xu , F. Wang , Nanoscale 2016, 8, 17055.
|
[54] |
J. Xiao , L. Wan , S. Yang , F. Xiao , S. Wang , Nano Lett. 2014, 14, 831.
|
[55] |
L. Liu , L. Fang , F. Wu , J. Hu , S. Zhang , H. Luo , B. Hu , M. Zhou , J. Alloys Compd. 2020, 824, 153929.
|
[56] |
D. Su , Z. Tang , J. Xie , Z. Bian , J. Zhang , D. Yang , D. Zhang , J. Wang , Y. Liu , A. Yuan , Appl. Surf. Sci. 2019, 469, 487.
|
[57] |
D. Chen , H. Chen , X. Chang , P. Liu , Z. Zhao , J. Zhou , G. Xu , H. Lin , S. Han , J. Alloys Compd. 2017, 729, 866.
|
[58] |
A. D. Jagadale , G. Guan , X. Li , X. Du , X. Ma , X. Hao , A. Abudula , J. Power Sources 2016, 306, 526.
|
[59] |
X. Cai , X. Shen , L. Ma , Z. Ji , C. Xu , A. Yuan , Chem. Eng. J. 2015, 268, 251.
|
[60] |
J.-J. Zhou , Q. Li , C. Chen , Y.-L. Li , K. Tao , L. Han , Chem. Eng. J. 2018, 350, 551.
|
[61] |
X. Wang , F. Huang , F. Rong , P. He , R. Que , J. Mater. Chem. A 2019, 7, 12018.
|
[62] |
Y. Zhao , X. He , R. Chen , Q. Liu , J. Liu , J. Yu , J. Li , H. Zhang , H. Dong , M. Zhang , Chem. Eng. J. 2018, 352, 29.
|
[63] |
C. Xia , Q. Jiang , C. Zhao , P. M. Beaujuge , H. N. Alshareef , Nano Energy 2016, 24, 78.
|
[64] |
H. Li , Y. Gao , C. Wang , G. Yang , Adv. Energy Mater. 2015, 5, 1401767.
|
[65] |
J. Chen , H. Chen , M. Chen , W. Zhou , Q. Tian , C. P. Wong , Chem. Eng. J. 2022, 428, 131380.
|
[66] |
G. Nagaraju , S. C. Sekhar , B. Ramulu , J. S. Yu , Small 2019, 15, 1805418.
|
[67] |
W. Chen , T. Wei , L.-E. Mo , S. Wu , Z. Li , S. Chen , X. Zhang , L. Hu , Chem. Eng. J. 2020, 400, 125856.
|
[68] |
C. Chen , D. Yan , X. Luo , W. Gao , G. Huang , Z. Han , Y. Zeng , Z. Zhu , A. C. S. Appl , Mater. Interfaces 2018, 10, 4662.
|
[69] |
C. Chen , S. Wang , X. Luo , W. Gao , G. Huang , Y. Zeng , Z. Zhu , J. Power Sources 2019, 409, 112.
|
[70] |
S. Guan , X. Fu , Z. Lao , C. Jin , Z. Peng , ACS Sustain. Chem. Eng. 2019, 7, 11672.
|
[71] |
J. Hao , S. Peng , H. Li , S. Dang , T. Qin , Y. Wen , J. Huang , F. Ma , D. Gao , F. Li , J. Mater. Chem. A 2018, 6, 16094.
|
/
〈 |
|
〉 |