Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes
Kwadwo Asare Owusu, Zhaoyang Wang, Ali Saad, Felix Ofori Boakye, Muhammad Asim Mushtaq, Muhammad Tahir, Ghulam Yasin, Dongqing Liu, Zhengchun Peng, Xingke Cai
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors. Herein, we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate, which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature. Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH, the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm-2 as cathode and anode at 2 mA cm-2, and 79.5% and 80% capacity have been preserved at 50 mA cm-2. In the meantime, they all showed excellent cycling performance with negligible change after >10 000 cycles. By fabricating them into an asymmetric supercapacitor, the device achieves high energy densities (5.61 mWh cm-2 and 0.352 mW cm-3). This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
amorphous nanosheets / aqueous supercapacitor / high volumetric/areal energy density / NiCo-LDH / room temperature synthesis
[1] |
J. García-Martínez , Nanotechnology for the Energy Challenge, Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim, Germany 2013.
|
[2] |
Y. Gogotsi , Nature 2014, 509, 568.
|
[3] |
S. Chu , A. Majumdar , Nature 2012, 488, 294.
|
[4] |
M. Winter , R. J. Brodd , Chem. Rev. 2004, 104, 4245.
|
[5] |
M. Armand , J.-M. Tarascon , Nature 2008, 451, 652.
|
[6] |
S. Wang , D. Liu , X. Cai , L. Zhang , Y. Liu , X. Qin , R. Zhao , X. Zeng , C. Han , C. Zhan , F. Kang , B. Li , Nano Energy 2021, 90, 106510.
|
[7] |
X. Zeng , D. Liu , S. Wang , S. Liu , X. Cai , L. Zhang , R. Zhao , B. Li , F. Kang , A. C. S. Appl , Mater. Interfaces 2020, 12, 37047.
|
[8] |
J. Ding , W. Hu , E. Paek , D. Mitlin , Chem. Rev. 2018, 118, 6457.
|
[9] |
Y. Shao , M. F. El-Kady , J. Sun , Y. Li , Q. Zhang , M. Zhu , H. Wang , B. Dunn , R. B. Kaner , Chem. Rev. 2018, 118, 9233.
|
[10] |
C. F. Liu , Y. C. Liu , T. Y. Yi , C. C. Hu , Carbon 2019, 145, 529.
|
[11] |
J. Chen , M. Chen , W. Zhou , X. Xu , B. Liu , W. Zhang , C. Wong , ACS Nano 2022, 16, 2461.
|
[12] |
N. Choudhary , C. Li , J. Moore , N. Nagaiah , L. Zhai , Y. Jung , J. Thomas , Adv. Mater. 2017, 29, 1605336.
|
[13] |
G. G. Amatucci , F. Badway , A. du Pasquier , T. Zheng , J. Electrochem. Soc. 2001, 148, A930.
|
[14] |
K. A. Owusu , L. Qu , J. Li , Z. Wang , K. Zhao , C. Yang , K. M. Hercule , C. Lin , C. Shi , Q. Wei , L. Zhou , L. Mai , Nat. Commun. 2017, 8, 14264.
|
[15] |
Y.-J. Gu , W. Wen , J.-M. Wu , J. Power Sources 2020, 469, 228425.
|
[16] |
N. Jabeen , A. Hussain , Q. Xia , S. Sun , J. Zhu , H. Xia , Adv. Mater. 2017, 29, 1700804.
|
[17] |
W. Su , F. Wu , L. Fang , J. Hu , L. Liu , T. Guan , X. Long , H. Luo , M. Zhou , J. Alloys Compd. 2019, 799, 15.
|
[18] |
K. Qin , L. Wang , S. Wen , L. Diao , P. Liu , J. Li , L. Ma , C. Shi , C. Zhong , W. Hu , E. Liu , N. Zhao , J. Mater. Chem. A 2018, 6, 8109.
|
[19] |
X. Han , J. Li , J. Lu , S. Luo , J. Wan , B. Li , C. Hu , X. Cheng , Nano Energy 2021, 86, 106079.
|
[20] |
Q. Li , Y. Xu , S. Zheng , X. Guo , H. Xue , H. Pang , Small 2018, 14, 1800426.
|
[21] |
P. Geng , L. Wang , M. Du , Y. Bai , W. Li , Y. Liu , S. Chen , P. Braunstein , Q. Xu , H. Pang , Adv. Mater. 2022, 34, 2107836.
|
[22] |
W. Li , X. Guo , P. Geng , M. Du , Q. Jing , X. Chen , G. Zhang , H. Li , Q. Xu , P. Braunstein , H. Pang , Adv. Mater. 2021, 33, 2105163.
|
[23] |
S. Zheng , Q. Li , H. Xue , H. Pang , Q. Xu , Nat. Sci. Rev. 2020, 7, 305.
|
[24] |
T. Wang , Z. Kou , S. Mu , J. Liu , D. He , I. S. Amiinu , W. Meng , K. Zhou , Z. Luo , S. Chaemchuen , F. Verpoort , Adv. Funct. Mater. 2018, 28, 1705048.
|
[25] |
J. Zhang , T. Zhang , D. Yu , K. Xiao , Y. Hong , CrstEngComm 2015, 17, 8212.
|
[26] |
T. Guan , L. Fang , L. Liu , F. Wu , Y. Lu , H. Luo , J. Hu , B. Hu , M. Zhou , J. Alloys Compd. 2019, 799, 521.
|
[27] |
Y. Guo , X. Hong , Y. Wang , Q. Li , J. Meng , R. Dai , X. Liu , L. He , L. Mai , Adv. Funct. Mater. 2019, 29, 1809004.
|
[28] |
X. Li , H. Wu , C. Guan , A. M. Elshahawy , Y. Dong , S. J. Pennycook , J. Wang , Small 2019, 15, 1803895.
|
[29] |
Y. Sun , H. Xu , X. Zhao , Z. Hui , C. Yu , L. Wang , J. Xue , Y. Zhao , R. Zhou , H. Dai , J. Mater. Chem. B 2019, 7, 6232.
|
[30] |
K. A. Owusu , Z. Wang , L. Qu , Z. Liu , J. A.-A. Mehrez , Q. Wei , L. Zhou , L. Mai , Chin. Chem. Lett. 2020, 31, 1620.
|
[31] |
N. S. McIntyre , M. G. Cook , Anal. Chem. 2002, 47, 2208.
|
[32] |
Z. Lv , Q. Zhong , Y. Bu , Adv. Mater. Interfaces 2018, 5, 1800438.
|
[33] |
B. Li , P. Gu , Y. Feng , G. Zhang , K. Huang , H. Xue , H. Pang , Adv. Funct. Mater. 2017, 27, 1605784.
|
[34] |
H. Liang , J. Lin , H. Jia , S. Chen , J. Qi , J. Cao , T. Lin , W. Fei , J. Feng , J. Power Sources 2018, 378, 248.
|
[35] |
J. Yang , C. Yu , C. Hu , M. Wang , S. Li , H. Huang , K. Bustillo , X. Han , C. Zhao , W. Guo , Adv. Funct. Mater. 2018, 28, 1803272.
|
[36] |
J. Yang , C. Yu , X. Fan , Z. Ling , J. Qiu , Y. Gogotsi , J. Mater. Chem. A 2013, 1, 1963.
|
[37] |
G. Yilmaz , K. M. Yam , C. Zhang , H. J. Fan , G. W. Ho , Adv. Mater. 2017, 29, 1606814.
|
[38] |
L. Gao , J. U. Surjadi , K. Cao , H. Zhang , P. Li , S. Xu , C. Jiang , J. Song , D. Sun , Y. Lu , A. C. S. Appl , Mater. Interfaces 2017, 9, 5409.
|
[39] |
F. Zhu , W. Liu , Y. Liu , W. Shi , Chem. Eng. J. 2020, 383, 123150.
|
[40] |
X. Wu , Y. Ru , Y. Bai , G. Zhang , Y. Shi , H. Pang , Coord. Chem. Rev. 2022, 451, 214260.
|
[41] |
J. Zhang , K. Xiao , T. Zhang , G. Qian , Y. Wang , Y. Feng , Electrochim. Acta 2017, 226, 113.
|
[42] |
Y. He , X. Zhang , J. Wang , Y. Sui , J. Qi , Z. Chen , P. Zhang , C. Chen , W. Liu , Adv. Mater. Interfaces 2021, 8, 2100642.
|
[43] |
Z. Jiang , Z. Li , Z. Qin , H. Sun , X. Jiao , D. Chen , Nanoscale 2013, 5, 11770.
|
[44] |
J. Wang , Y. Wei , J. Yu , Appl. Clay Sci. 2013, 72, 37.
|
[45] |
L. Wei , H. E. Karahan , S. Zhai , H. Liu , X. Chen , Z. Zhou , Y. Lei , Z. Liu , Adv. Mater. 2017, 29, 1701410.
|
[46] |
Y. Liu , Y. Wang , C. Shi , Y. Chen , D. Li , Z. He , C. Wang , L. Guo , J. Ma , Carbon 2020, 165, 129.
|
[47] |
Y. Liu , X. Teng , Y. Mi , Z. Chen , J. Mater. Chem. A 2017, 5, 24407.
|
[48] |
C. Guan , X. Liu , W. Ren , X. Li , C. Cheng , J. Wang , Adv. Energy Mater. 2017, 7, 1602391.
|
[49] |
J. H. Lee , H. J. Lee , S. Y. Lim , K. H. Chae , S. H. Park , K. Y. Chung , E. Deniz , J. W. Choi , Adv. Funct. Mater. 2017, 27, 1605225.
|
[50] |
H. Lindström , S. Södergren , A. Solbrand , H. Rensmo , J. Hjelm , A. Hag-feldt , S.-E. Lindquist , J. Phys. Chem. B 1997, 101, 7717.
|
[51] |
Y. Jiang , L. Zhang , H. Zhang , C. Zhang , S. Liu , J. Power Sources 2016, 329, 473.
|
[52] |
Z.-H. Huang , F.-F. Sun , M. Batmunkh , W.-H. Li , H. Li , Y. Sun , Q. Zhao , X. Liu , T.-Y. Ma , J. Mater. Chem. A 2019, 7, 11826.
|
[53] |
X. Zheng , H. Quan , X. Li , H. He , Q. Ye , X. Xu , F. Wang , Nanoscale 2016, 8, 17055.
|
[54] |
J. Xiao , L. Wan , S. Yang , F. Xiao , S. Wang , Nano Lett. 2014, 14, 831.
|
[55] |
L. Liu , L. Fang , F. Wu , J. Hu , S. Zhang , H. Luo , B. Hu , M. Zhou , J. Alloys Compd. 2020, 824, 153929.
|
[56] |
D. Su , Z. Tang , J. Xie , Z. Bian , J. Zhang , D. Yang , D. Zhang , J. Wang , Y. Liu , A. Yuan , Appl. Surf. Sci. 2019, 469, 487.
|
[57] |
D. Chen , H. Chen , X. Chang , P. Liu , Z. Zhao , J. Zhou , G. Xu , H. Lin , S. Han , J. Alloys Compd. 2017, 729, 866.
|
[58] |
A. D. Jagadale , G. Guan , X. Li , X. Du , X. Ma , X. Hao , A. Abudula , J. Power Sources 2016, 306, 526.
|
[59] |
X. Cai , X. Shen , L. Ma , Z. Ji , C. Xu , A. Yuan , Chem. Eng. J. 2015, 268, 251.
|
[60] |
J.-J. Zhou , Q. Li , C. Chen , Y.-L. Li , K. Tao , L. Han , Chem. Eng. J. 2018, 350, 551.
|
[61] |
X. Wang , F. Huang , F. Rong , P. He , R. Que , J. Mater. Chem. A 2019, 7, 12018.
|
[62] |
Y. Zhao , X. He , R. Chen , Q. Liu , J. Liu , J. Yu , J. Li , H. Zhang , H. Dong , M. Zhang , Chem. Eng. J. 2018, 352, 29.
|
[63] |
C. Xia , Q. Jiang , C. Zhao , P. M. Beaujuge , H. N. Alshareef , Nano Energy 2016, 24, 78.
|
[64] |
H. Li , Y. Gao , C. Wang , G. Yang , Adv. Energy Mater. 2015, 5, 1401767.
|
[65] |
J. Chen , H. Chen , M. Chen , W. Zhou , Q. Tian , C. P. Wong , Chem. Eng. J. 2022, 428, 131380.
|
[66] |
G. Nagaraju , S. C. Sekhar , B. Ramulu , J. S. Yu , Small 2019, 15, 1805418.
|
[67] |
W. Chen , T. Wei , L.-E. Mo , S. Wu , Z. Li , S. Chen , X. Zhang , L. Hu , Chem. Eng. J. 2020, 400, 125856.
|
[68] |
C. Chen , D. Yan , X. Luo , W. Gao , G. Huang , Z. Han , Y. Zeng , Z. Zhu , A. C. S. Appl , Mater. Interfaces 2018, 10, 4662.
|
[69] |
C. Chen , S. Wang , X. Luo , W. Gao , G. Huang , Y. Zeng , Z. Zhu , J. Power Sources 2019, 409, 112.
|
[70] |
S. Guan , X. Fu , Z. Lao , C. Jin , Z. Peng , ACS Sustain. Chem. Eng. 2019, 7, 11672.
|
[71] |
J. Hao , S. Peng , H. Li , S. Dang , T. Qin , Y. Wen , J. Huang , F. Ma , D. Gao , F. Li , J. Mater. Chem. A 2018, 6, 16094.
|
/
〈 | 〉 |