In Situ Coupling of Highly Dispersed Ni/Fe Metal-NC Sites and N-Doped 3D Carbon Fibers Toward Free-Standing Bifunctional Cathode for Flexible Zinc-Air Battery
Chenglong Lai, Mengjun Li, Yi Shen, Min Zhou, Wei Wang, Kai Jiang, Haomiao Li, Kangli Wang
In Situ Coupling of Highly Dispersed Ni/Fe Metal-NC Sites and N-Doped 3D Carbon Fibers Toward Free-Standing Bifunctional Cathode for Flexible Zinc-Air Battery
Designing flexible free-standing air-electrode with efficient OER/ORR performance is of vital importance for the application of Zinc-air batteries in flexible electronics. Herein, a flexible free-standing electrode (Ni/Fe-NC/NCF/CC) is synthesized by in-situ coupling of binary Ni/Fe-NC nanocubes and N-doped carbon nanofibers (NCF) rooted on carbon cloth. The highly dispersed binary Ni/Fe-NC sites ensure excellent ORR activity and create efficient OER active sites relative to Ni-NC and Fe-NC. The in-situ coupling of Ni/Fe-NC and NCF constructs a 3D interconnected network structure that not only provides abundant and stabilized reactive sites but also guarantees fast electron transfer and gas transportation, thus achieving efficient and fast operation of ORR/OER. Therefore, Ni/Fe-NC/NCF/CC displays a much positive potential (0.952 V) at 4.0 mA cm–2 for ORR and a low OER overpotential (310 mV) at 50 mA cm–2. The Zinc-air battery with Ni/Fe-NC/NCF/CC air-electrode exhibits excellent battery performance with outstanding discharge/charge durability for 2150 cycles. The flexible Zn-air batteries with foldable mechanical properties display a high power density of 105.0 mW cm–2. This work widened the way to prepare flexible bifunctional air-electrode by designing composition/structure and in-situ coupling.
binary Ni/Fe-NC sites / in-situ coupling / synergistic catalytic effect / Zn-air battery
[1] |
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.
|
[2] |
X. Chi, M. Li, J. Di, P. Bai, L. Song, X. Wang, F. Li, S. Liang, J. Xu, J. Yu, Nature 2021, 592, 551.
|
[3] |
Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu, C. Li, Appl. Catal. B Environ. 2019, 256, 117893.
|
[4] |
J. Fu, F. M. Hassan, C. Zhong, J. Lu, H. Liu, A. Yu, Z. Chen, Adv. Mater. 2017, 29, 1702526.
|
[5] |
J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. Chen, Adv. Mater. 2017, 29, 1604685.
|
[6] |
J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
|
[7] |
Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257.
|
[8] |
W. Zhang, Y. Huang, Y. Liu, L. Wang, S. Chou, H. Liu, Adv. Energy Mater. 2019, 9, 1900464.
|
[9] |
Y. Hao, A. Huang, S. Han, H. Huang, J. Song, X. Sun, Z. Wang, L. Li, F. Hu, J. Xue, S. Peng, ACS Appl. Mater. Interfaces 2020, 12, 29393.
|
[10] |
M. Gorlin, P. Chernev, J. Ferreira de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2016, 138, 5603.
|
[11] |
Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano 2018, 12, 245.
|
[12] |
C. Lai, M. Gong, Y. Zhou, J. Fang, L. Huang, Z. Deng, X. Liu, T. Zhao, R. Lin, K. Wang, K. Jiang, H. Xin, D. Wang, Appl. Catal. Environ. 2020, 274, 119086.
|
[13] |
C. Lai, J. Wang, W. Lei, C. Xuan, W. Xiao, T. Zhao, T. Huang, L. Chen, Y. Zhu, D. Wang, A. C. S. Appl, Mater. Inter. 2018, 10, 38093.
|
[14] |
Y. Wang, G. Zhang, M. Ma, Y. Ma, J. Huang, C. Chen, Y. Zhang, X. Sun, Z. Yan, Sci. China Mater. 2020, 63, 1182.
|
[15] |
D. Wang, Y.-P. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri, X. Wang, Z. Chen, Energy Storage Mater. 2021, 41, 427.
|
[16] |
Y. Fan, S. Ida, A. Staykov, T. Akbay, H. Hagiwara, J. Matsuda, K. Kaneko, T. Ishihara, Small 2017, 13, 1700099.
|
[17] |
Z. Liu, H. Tan, J. Xin, J. Duan, X. Su, P. Hao, J. Xie, J. Zhan, J. Zhang, J. J. Wang, H. Liu, ACS Appl. Mater. Interfaces 2018, 10, 3699.
|
[18] |
J. Zhang, L. Yu, Y. Chen, X. F. Lu, S. Gao, X. W. D. Lou, Adv. Mater. 2020, 32, e1906432.
|
[19] |
A. Azhar, M. B. Zakaria, E. M. Ebeid, T. Chikyow, Y. Bando, A. A. Alshehri, Y. G. Alghamdi, Z. X. Cai, N. A. Kumar, J. Lin, H. Kim, Y. Yamauchi, ChemistryOpen 2018, 7, 599.
|
[20] |
S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016,
CrossRef
Google scholar
|
[21] |
L. Zhang, W. Cai, N.Bao, Adv. Mater. 2021, 33, e2100745.
|
[22] |
W. Lei, Y.-P. Deng, G. Li, Z. P. Cano, X. Wang, D. Luo, Y. Liu, D. Wang, Z. Chen, ACS Catal. 2018, 8, 2464.
|
[23] |
Q. Wang, L. Shang, R. Shi, X. Zhang, G. I. N. Waterhouse, L.-Z. Wu, C.- H. Tung, T. Zhang, Nano Energy 2017, 40, 382.
|
[24] |
X. Han, X. Ling, D.Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, Adv. Mater. 2019, 31, e1905622.
|
[25] |
Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Angew. Chem. Int. Ed. 2021, 60, 12759.
|
[26] |
X. Zhang, X. Han, Z. Jiang, J. Xu, L. Chen, Y. Xue, A. Nie, Z. Xie, Q. Kuang, L. Zheng, Nano Energy 2020, 71, 104547.
|
[27] |
Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, Z. Zeng, M. Huang, H. Yang, B. Liu, S. J. Pennycook, P. Chen, Adv. Energy Mater. 2020, 10, 2002896.
|
[28] |
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao, Angew. Chem. Int. Ed. 2019, 58, 6972.
|
[29] |
Z. Gao, Y. Li, C. Zhang, S. Zhang, Y. Jia, Y. Dong, Anal. Chim. Acta 2020, 1097, 169.
|
[30] |
L. Yang, L. Yu, R. Lv, Adv. Mater. 2021, 34, 2105410.
|
[31] |
X. Zheng, X. Cao, Z. Sun, K. Zeng, J. Yan, R. Yang, Appl. Catal. Environ. 2020, 272, 118967.
|
[32] |
C. Lai, J. Fang, X. Liu, M. Gong, T. Zhao, T. Shen, K. Wang, K. Jiang, D. Wang, Appl. Catal. Environ. 2021, 285, 119856.
|
[33] |
Q. Hu, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Angew. Chem. Int. Ed. 2019, 58, 4318.
|
[34] |
L. Wan, E. Shamsaei, C. D. Easton, D. Yu, Y. Liang, X. Chen, Z. Abbasi, A. Akbari, X. Zhang, H. Wang, Carbon 2017, 121, 330.
|
[35] |
X. Zhou, H. Zhou, S. Yan, Y. He, W. Zhang, H. Li, K. Wang, K. Jiang, J. Power Sources 2022, 534, 231428.
|
[36] |
P. Cai, K. Wang, J. Ning, X. He, M. Chen, Q. Li, H. Li, M. Zhou, W.Wang, K.Jiang, Adv. Energy Mater. 2022, 2202182.
|
[37] |
S. Cao, X. He, L.Nie, J. Hu, M. Chen, Y. Han, K. Wang, K.Jiang, M.Zhou, Adv. Sci. 2022, 9, e2201147.
|
[38] |
W. Li, K. Wang, S. Cheng, K. Jiang, Adv. Energy Mater. 2019, 9, 1900993.
|
[39] |
Z. Li, X. Wu, X. Jiang, B. Shen, Z. Teng, D. Sun, G. Fu, Y. Tang, Adv. Powder Mater. 2022, 1, 100020.
|
[40] |
M. Li, X. Wu, K. Liu, Y. Zhang, X. Jiang, D. Sun, Y. Tang, K. Huang, G. Fu, J. Energy Chem. 2022, 69, 506.
|
[41] |
Y. Ma, D. Chen, W. Li, Y. Zheng, L. Wang, G. Shao, Q. Liu, W. Yang, Energy Environ. Mater. 2022, 5, 543.
|
[42] |
X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M. S. A. Hossain, L. Pan, Y. Yamauchi, A. C. S. Appl, Mater. Inter. 2017, 9, 38737.
|
[43] |
J. Li, Z. Wu, Q. Duan, A. Alsaedi, T. Hayat, C. Chen, J. Clean. Prod. 2018, 204, 896.
|
/
〈 | 〉 |