Chlorofullerene C60Cl6 Enables Efficient and Stable Tin-Based Perovskite Solar Cells
Jingfu Chen, Chengbo Tian, Chao Sun, Panpan Yang, Wenjing Feng, Lingfang Zheng, Liu Yang, Enlong Hou, Jiefeng Luo, Liqiang Xie, Zhanhua Wei
Chlorofullerene C60Cl6 Enables Efficient and Stable Tin-Based Perovskite Solar Cells
Tin-based perovskite solar cells (TPSCs) have received great attention due to their eco-friendly properties and high theoretical efficiencies. However, the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance. Herein, a chlorofullerene, C60Cl6, with six chlorine attached to the C60 cage, is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film. The chemical interactions between C60Cl6 and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film. It is also revealed that the C60Cl6 located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films, especially the oxidation of Sn2+ to Sn4+. As a result, the C60Cl6-based device yields a remarkably improved device efficiency from 10.03% to 13.30% with enhanced stability. This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.
crystallization regulation / defect passivation / fullerene derivative / perovskites solar cell / tin-based perovskite
[1] |
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381.
|
[2] |
H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444.
|
[3] |
R. He, S. Q. Ren, C. Chen, Z. J. Yi, Y. Luo, H. G. Lai, W. W. Wang, G. G. Zeng, X. Hao, Y. Wang, J. Q. Zhang, C. L. Wang, L. L. Wu, F. Fu, D. W. Zhao, Energy Environ. Sci. 2021, 14, 5723.
|
[4] |
National Renewable Energy Laboratory, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html (accessed: March 2022).
|
[5] |
M. J. Kim, J. K. Jeong, H. Z. Lu, T. K. Lee, F. T. Eickemeyer, Y. H. Liu, Grätzel , D. S. Kim, Science 2022, 375, 302.
|
[6] |
V. K. Ravi, B. Mondal, V. V. Nawale, A. Nag, ACS Omega 2020, 5, 29631.
|
[7] |
J. Lee, G. W. Kim, M. Kim, S. A. Park, T. Park, Adv. Energy Mater. 2020, 10, 1902662.
|
[8] |
M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122.
|
[9] |
X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Nat. Commun. 2020, 11, 1245.
|
[10] |
T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A 2015, 3, 23829.
|
[11] |
G. M. Paternò, N. Mishra, A. J. Barker, Z. Dang, G. Lanzani, L. Manna, A. Petrozza, Adv. Funct. Mater. 2018, 29, 1805299.
|
[12] |
S. M. Jain, D. Phuyal, M. L. Davies, M. Li, B. Philippe, C. De Castro, Z. Qiu, J. Kim, T. Watson, W. C. Tsoi, O. Karis, H. Rensmo, G. Boschloo, T. Edvinsson, J. R. Durrant, Nano Energy 2018, 49, 614.
|
[13] |
W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 2019, 31, e1803230.
|
[14] |
Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 31, e1803792.
|
[15] |
B. B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han, G. Chen, X. Zhang, Z. Du, Z. He, Adv. Mater. 2021, 33, e2102055.
|
[16] |
J. Liu, M. Ozaki, S. Yakumaru, T. Handa, R. Nishikubo, Y. Kanemitsu, A. Saeki, Y. Murata, R. Murdey, A. Wakamiya, Angew. Chem. Int. Ed. 2018, 57, 13221.
|
[17] |
T. Imran, S. Rauf, H. Raza, L. Aziz, R. Chen, S. W. Liu, J. N. Wang, M. A. Ahmad, S. S. Zhang, Y. Q. Zhang, Z. H. Liu, W. Chen, Adv. Energy Mater. 2022, 12, 2200305.
|
[18] |
J. P. Cao, F. Yan, Energy Environ. Sci. 2021, 14, 1286.
|
[19] |
M. Li, F. M. Li, J. Gong, T. K. Zhang, F. Gao, W. H. Zhang, M. Z. Liu, Small. Struct. 2021, 3, 2100102.
|
[20] |
C. Tian, C. Sun, J. Chen, P. Song, E. Hou, P. Xu, Y. Liang, P. Yang, J. Luo, L. Xie, Z. Wei, Nano 2022, 12, 532.
|
[21] |
S. S. Lv, W. Y. Gao, Y. H. Liu, H. Dong, N. Sun, T. T. Niu, Y. D. Xia, Z. B. Wu, L. Song, C. X. Ran, L. Fu, Y. H. Chen, J. Energy Chem. 2022, 65, 371.
|
[22] |
T. H. Wu, D. Y. Cui, X. Liu, X. H. Luo, H. Z. Su, H. Segawa, Y. Q. Zhang, Y. B. Wang, L. Y. Han, Sol. RRL 2021, 5, 2100034.
|
[23] |
C. Pereyra, H. Xie, M. Lira-Cantu, J. Energy Chem. 2021, 60, 599.
|
[24] |
M. H. Li, J. J. Zhou, L. G. Tan, Y. Liu, S. Y. Wang, C. F. Jiang, H. Li, X. Zhao, X. Y. Gao, W. Tress, L. M. Ding, C. Y. Yi, Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
[25] |
V. G. V. Dutt, S. Akhil, R. Singh, M. Palabathuni, N. Mishra, J. Phys. Chem. C 2022, 126, 9502.
|
[26] |
S. L. Zou, S. Q. Ren, Y. T. Jiang, Y. F. Huang, W. W. Wang, C. L. Wang, C. Chen, X. Hao, L. L. Wu, J. Q. Zhang, D. W. Zhao, Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
[27] |
S. Akhil, V. G. V. Dutt, N. Mishra, Nanoscale Adv. 2021, 3, 2547.
|
[28] |
H. Li, J. Shi, J. Deng, Z. Chen, Y. Li, W. Zhao, J. Wu, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Mater. 2020, 32, e1907396.
|
[29] |
Z. Chen, M. Liu, Z. Li, T. Shi, Y. Yang, H. L. Yip, Y. Cao, iScience 2018, 9, 337.
|
[30] |
M. E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda, A. Islam, ACS Energy Lett. 2018, 4, 278.
|
[31] |
Y. Fang, C. Bi, D. Wang, J. Huang, ACS Energy Lett. 2017, 2, 782.
|
[32] |
D. M. Guldi, M. Prato, Acc. Chem. Res. 2000, 33, 695.
|
[33] |
Y. Liang, P. Song, H. Tian, C. Tian, W. Tian, Z. Nan, Y. Cai, P. Yang, C. Sun, J. Chen, L. Xie, Q. Zhang, Z. Wei, Adv. Funct. Mater. 2021, 32, 2110139.
|
[34] |
C. Wu, K. Wang, Y. Yan, D. Yang, Y. Jiang, B. Chi, J. Liu, A. R. Esker, J. Rowe, A. J. Morris, M. Sanghadasa, S. Priya, Adv. Funct.Mater. 2019, 29, 1804419.
|
[35] |
C. Kan, Z. Tang, Y. Yao, P. Hang, B. Li, Y. Wang, X. Sun, M. Lei, D. Yang, X. Yu, ACS Energy Lett. 2021, 6, 3864.
|
[36] |
K. Liu, C. Tian, Y. Liang, Y. Luo, L. Xie, Z. Wei, Nano Res. 2022, 15, 7139.
|
[37] |
H. Ban, Q. Sun, T. Zhang, H. Li, Y. Shen, M. Wang, Sol. RRL 2019, 4, 1900457.
|
[38] |
W. Bao-Shan, M.-W. An, J.-M. Chen, D.-Q. Yun, S.-Y. Xie, L.-S. Zheng, Cell Rep. Phys. Sci. 2021, 2, 100646.
|
[39] |
H. Wang, F. Li, P. Wang, R. Sun, W. Ma, M. Chen, W. Miao, D. Liu, T. Wang, Adv. Energy Mater. 2020, 10, 2000615.
|
[40] |
J. Xia, C. Liang, H. Gu, S. Mei, S. Li, N. Zhang, S. Chen, Y. Cai, G. Xing, Energy Environ. Mater. 2022,
CrossRef
Google scholar
|
[41] |
X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei, Z. J. Ning, Acc. Chem. Res. 2021, 2, 210.
|
[42] |
X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei, L. Jiang, Z. Wang, Z. Peng, F. Wang, Z. Zang, K. Xu, Y. Hou, S. Teale, W. Zhou, R. Si, X. Gao, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2021, 143, 10970.
|
[43] |
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
|
[44] |
W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. Seok, Science 2017, 356, 1376.
|
[45] |
D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr1, Science 2015, 347, 6221.
|
[46] |
A. Sussman, J. Appl. Phys. 1967, 38, 2738.
|
[47] |
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
|
[48] |
L. Krückemeier, U. Rau, M. Stolterfoht, T. Kirchartz, Adv. Energy Mater. 2019, 10, 1902573.
|
[49] |
F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Adv. Funct. Mater. 2016, 26, 3417.
|
[50] |
X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. B. Wang, L. Y. Han, Energy Environ. Sci. 2020, 13, 2896.
|
[51] |
L. Zhao, J. Gao, Y. L. Lin, Y. W. Yeh, K. M. Lee, N. Yao, Y. L. Loo, B. P. Rand, Adv. Mater. 2017, 29, 1605317.
|
[52] |
J. Chmeliov, K. Elkhouly, R. Gegevičius, L. Jonušis, A. Devižis, A. Gelžinis, M. Franckevičius, I. Goldberg, J. Hofkens, P. Heremans, W. Qiu, V. Gulbinas, Adv. Opt. Mater. 2021, 9, 2101560.
|
[53] |
K. Elkhouly, R. Gehlhaar, J. Genoe, P. Heremans, W. Qiu, Adv. Opt. Mater. 2020, 8, 2000941.
|
/
〈 | 〉 |