“Win-Win” Scenario of High Energy Density and Long Cycling Life in a Novel Na3.9MnCr0.9Zr0.1(PO4)3 Cathode

Yao Wang, Yukun Liu, Pingge He, Junteng Jin, Xudong Zhao, Qiuyu Shen, Jie Li, Xuanhui Qu, Yongchang Liu, Lifang Jiao

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12519. DOI: 10.1002/eem2.12519
RESEARCH ARTICLE

“Win-Win” Scenario of High Energy Density and Long Cycling Life in a Novel Na3.9MnCr0.9Zr0.1(PO4)3 Cathode

Author information +
History +

Abstract

The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge. Although Na4MnCr(PO4)3 has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions, it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn3+. Herein, the selective substitution of Cr by Zr in Na4MnCr(PO4)3 was explored to enhance the structural stability, due to the pinning effect of Zr ions and the ≈2.9-electron reactions, as-prepared Na3.9MnCr0.9Zr0.1(PO4)3/C delivers a high capacity retention of 85.94% over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g–1 at 0.1 C, enabling the stable energy output as high as 555.2 Wh kg–1. Moreover, during the whole charge/discharge process, a small volume change of only 6.7% was verified by in situ X-ray diffraction, and the reversible reactions of Cr3+/Cr4+, Mn3+/Mn4+, and Mn2+/Mn3+ redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses. Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na3.9MnCr0.9Zr0.1(PO4)3/C electrode. This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.

Keywords

high energy density / mechanism investigation / NASICON-type cathodes / sodium-ion batteries / structure modification

Cite this article

Download citation ▾
Yao Wang, Yukun Liu, Pingge He, Junteng Jin, Xudong Zhao, Qiuyu Shen, Jie Li, Xuanhui Qu, Yongchang Liu, Lifang Jiao. “Win-Win” Scenario of High Energy Density and Long Cycling Life in a Novel Na3.9MnCr0.9Zr0.1(PO4)3 Cathode. Energy & Environmental Materials, 2024, 7(1): 12519 https://doi.org/10.1002/eem2.12519

References

[1]
C. Yang, S. Xin, L. Mai, Y. You, Adv. Energy Mater. 2021, 11, 2000974.
[2]
T. Jin, H. Li, K. Zhu, P.-F. Wang, P. Liu, L. Jiao, Chem. Soc. Rev. 2020, 49, 2342.
[3]
P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Adv. Energy Mater. 2018, 8, 1703055.
[4]
C. Sun, Y. Zhao, Q. Ni, Z. Sun, X. Yuan, J. Li, H. Jin, Energy Storage Mater. 2022, 49, 291.
[5]
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
[6]
Y.-E. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, eScience 2021, 1, 13.
[7]
W. Wang, J. Zhang, C. Li, X. Kou, B. Li, D. Y. W. Yu, Energy Environ. Mater. 2022,
CrossRef Google scholar
[8]
Q. Ni, Y. Bai, F. Wu, C. Wu, Adv. Sci. 2017, 4, 1600275.
[9]
C. Masquelier, L. Croguennec, Chem. Rev. 2013, 113, 6552.
[10]
Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang, Adv. Sci. 2017, 4, 1600392.
[11]
R. Liu, Z. Liang, Z. Gong, Y. Yang, Small Methods 2019, 3, 1800221.
[12]
X. Cao, J. Zhou, A. Pan, S. Liang, Acta Phys. Chim. Sin. 2020, 36, 1905018.
[13]
H. Li, M. Xu, Z. Zhang, Y. Lai, J. Ma, Adv. Funct. Mater. 2020, 30, 2000473.
[14]
J. Hou, M. Hadouchi, L. Sui, J. Liu, M. Tang, W. H. Kan, M. Avdeev, G. Zhong, Y.-K. Liao, Y.-H. Lai, Y.-H. Chu, H.-J. Lin, C.-T. Chen, Z. Hu, Y. Huang, J. Ma, Energy Storage Mater. 2021, 42, 307.
[15]
Z.-Y. Gu, J.-Z. Guo, Z.-H. Sun, X.-X. Zhao, X.-T. Wang, H.-J. Liang, X.-L. Wu, Y. Liu, Cell Rep. Phys. Sci. 2021, 2, 100665.
[16]
M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu, X. Yang, X.-L. Wu, Green Energy Environ. 2022, 7, 763.
[17]
Z. Jian, Y.-S. Hu, X. Ji, W. Chen, Adv. Mater. 2017, 29, 1601925.
[18]
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.
[19]
Y. Liu, J. Li, Q. Shen, J. Zhang, P. He, X. Qu, Y. Liu, eScience 2022, 2, 10.
[20]
X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater. 2015, 27, 6670.
[21]
D. Wang, P. Cai, G.-Q. Zou, H.-S. Hou, X.-B. Ji, Y. Tian, Z. Long, Rare Metals 2022, 41, 115.
[22]
L. Shen, Y. Li, S. Roy, X. Yin, W. Liu, S. Shi, X. Wang, X. Yin, J. Zhang, Y. Zhao, Chin. Chem. Lett. 2021, 32, 3570.
[23]
W. Zhou, L. Xue, X. Lü, H. Gao, Y. Li, S. Xin, G. Fu, Z. Cui, Y. Zhu, J. B. Goodenough, Nano Lett. 2016, 16, 7836.
[24]
H. Gao, Y. Li, K. Park, J. B. Goodenough, Chem. Mater. 2016, 28, 6553.
[25]
K. Kawai, W. Zhao, S. Nishimura, A. Yamada, ACS Appl. Energy Mater. 2018, 1, 928.
[26]
F. Chen, V. M. Kovrugin, R. David, O. Mentré, F. Fauth, J.-N. Chotard, C. Masquelier, Small Methods 2019, 3, 1800218.
[27]
T. Zhu, P. Hu, X. Wang, Z. Liu, W. Luo, K. Owusu, W. Cao, C. Shi, J. Li, L. Zhou, L. Mai, Adv. Energy Mater. 2019, 9, 1803436.
[28]
J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu, Y. Song, S. Sun, Q. Li, X. Xing, J. Chen, Adv. Mater. 2020, 32, 1906348.
[29]
J. Chen, Y. Chen, Y. Wang, C. Wang, Z. He, D. Li, L. Guo, J. Power Sources 2020, 474, 228632.
[30]
J. Wang, Y. Wang, D.-H. Seo, T. Shi, S. Chen, Y. Tian, H. Kim, G. Ceder, Adv. Energy Mater. 2020, 10, 1903968.
[31]
M. Chen, W. Hua, J. Xiao, D. Cortie, X. Guo, E. Wang, Q. Gu, Z. Hu, S. Indris, X.-L. Wang, S.-L. Chou, S.-X. Dou, Angew. Chem. Int. Ed. 2020, 59, 2449.
[32]
X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang, X. Kong, T. Zhu, J. Zhou, G. Cao, S. Liang, Nano Energy 2019, 60, 312.
[33]
M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S.-L. Chou, S.-X. Dou, Nat. Commun. 2019, 10, 1480.
[34]
C. Xu, R. Xiao, J. Zhao, F. Ding, Y. Yang, X. Rong, X. Guo, C. Yang, H. Liu, B. Zhong, Y.-S. Hu, ACS Energy Lett. 2022, 7, 97.
[35]
H. Ma, B. Zhao, J. Bai, K. Li, Z. Fang, P. Wang, W. Li, X. Zhu, Y. Sun, J. Electrochem. Soc. 2020, 167, 070548.
[36]
M. Chen, W. Hua, J. Xiao, J. Zhang, V. W. Lau, M. Park, G.-H. Lee, S. Lee, W. Wang, J. Peng, L. Fang, L. Zhou, C.-K. Chang, Y. Yamauchi, S. Chou, Y.-M. Kang, J. Am. Chem. Soc. 2021, 143, 8091.
[37]
R. Rajagopalan, B. Chen, Z. Zhang, X.-L. Wu, Y. Du, Y. Huang, B. Li, Y. Zong, J. Wang, G.-H. Nam, M. Sindoro, S. X. Dou, H. K. Liu, H. Zhang, Adv. Mater. 2017, 29, 1605694.
[38]
Y. Liu, S. Wang, X. Sun, J. Zhang, F. Zaman, L. Hou, C. Yuan, Energy Environ. Mater. 2020,
CrossRef Google scholar
[39]
W. Zhang, H. Li, Z. Zhang, M. Xu, Y. Lai, S.-L. Chou, Small 2020, 16, 2001524.
[40]
Y. Zhao, X. Gao, H. Gao, A. Dolocan, J. B. Goodenough, Nano Lett. 2021, 21, 2281.
[41]
H. Gao, I. D. Seymour, S. Xin, L. Xue, G. Henkelman, J. B. Goodenough, J. Am. Chem. Soc. 2018, 140, 18192.
[42]
H. Kim, G. Yoon, I. Park, K.-Y. Park, B. Lee, J. Kim, Y.-U. Park, S.-K. Jung, H.-D. Lim, D. Ahn, S. Lee, K. Kang, Energy Environ. Sci. 2015, 8, 3325.
[43]
J. Zhang, X. Zhao, Y. Song, Q. Li, Y. Liu, J. Chen, X. Xing, Energy Storage Mater. 2019, 23, 25.
[44]
C. S. Park, H. Kim, R. A. Shakoor, E. Yang, S. Y. Lim, R. Kahraman, Y. Jung, J. W. Choi, J. Am. Chem. Soc. 2013, 135, 2787.
[45]
C. Xu, J. Zhao, E. Wang, X. Liu, X. Shen, X. Rong, Q. Zheng, G. Ren, N. Zhang, X. Liu, X. Guo, C. Yang, H. Liu, B. Zhong, Y.-S. Hu, Adv. Energy Mater. 2021, 11, 2100729.
[46]
H. Li, T. Jin, X. Chen, Y. Lai, Z. Zhang, W. Bao, L. Jiao, Adv. Energy Mater. 2018, 8, 1801418.
[47]
M.-Y. Wang, J.-Z. Guo, Z.-W. Wang, Z.-Y. Gu, X.-J. Nie, X. Yang, X.-L. Wu, Small 2020, 16, 1907645.
[48]
K. Walczak, B. Gȩdziorowski, A. Kulka, W. Zając, M. Ziąbka, R. Idczak, V. H. Tran, J. Molenda, ACS Appl. Mater. Interfaces 2019, 11, 43046.
[49]
P. Lavela, R. Klee, J. L. Tirado, J. Power Sources 2021, 495, 229811.
[50]
S. Ghosh, N. Barman, M. Mazumder, S. K. Pati, G. Rousse, P. Senguttuvan, Adv. Energy Mater. 2020, 10, 1902918.
[51]
H. Li, M. Xu, C. Gao, W. Zhang, Z. Zhang, Y. Lai, L. Jiao, Energy Storage Mater. 2020, 26, 325.
[52]
C. Xu, J. Zhao, Y.-A. Wang, W. Hua, Q. Fu, X. Liang, X. Rong, Q. Zhang, X. Guo, C. Yang, H. Liu, B. Zhong, Y.-S. Hu, Adv. Energy Mater. 2022, 12, 2200966.
[53]
W. Zhang, Y. Wu, Z. Xu, H. Li, M. Xu, J. Li, Y. Dai, W. Zong, R. Chen, L. He, Z. Zhang, D. J. L. Brett, G. He, Y. Lai, I. P. Parkin, Adv. Energy Mater. 2022, 12, 2201065.
[54]
G. Cui, Q. Dong, Z. Wang, X.-Z. Liao, S. Yuan, M. Jiang, Y. Shen, H. Wang, H. Che, Y.-S. He, Z.-F. Ma, Nano Energy 2021, 89, 106462.
[55]
Y.-N. Zhou, P.-F. Wang, Y.-B. Niu, Q. Li, X. Yu, Y.-X. Yin, S. Xu, Y.-G. Guo, Nano Energy 2019, 55, 143.
[56]
Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao, X.-Y. Zheng, W.-H. Li, Z.-H. Sun, H.-J. Liang, X.-L. Wu, Adv. Mater. 2022, 34, 2110108.
[57]
B. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/