High Areal Capacity and Long Cycle Life Flexible Mild Quasi-Solid-State Ag-Zn Battery with Dendrite-Free Anode
Yanzhe Zhu, Renbo Zhu, Fandi Chen, Shuo Zhang, Yu-Chieh Kuo, Peiyuan Guan, Mengyao Li, Yunjian Liu, Zhaojun Han, Tao Wan, Dawei Wang, Caiyun Wang, Dewei Chu
High Areal Capacity and Long Cycle Life Flexible Mild Quasi-Solid-State Ag-Zn Battery with Dendrite-Free Anode
Silver-zinc (Ag-Zn) batteries are a promising battery system for flexible electronics owing to their high safety, high energy density, and stable output voltage. However, poor cycling performance, low areal capacity, and inferior flexibility limit the practical application of Ag-Zn batteries. Herein, we develop a flexible quasi-solid-state Ag-Zn battery system with superior performance by using mild electrolyte and binder-free electrodes. Copper foam current collector is introduced to impede the growth of Zn dendrite, and the structure of Ag cathode is engineered by electrodeposition and chloridization process to improve the areal capacity. This novel battery demonstrates a remarkable cycle retention of 90% for 200 cycles at 3 mA cm-2. More importantly, this binder-free battery can afford a high capacity of 3.5 mAh cm-2 at 3 mA cm-2, an outstanding power density of 2.42 mW cm-2, and a maximum energy density of 3.4 mWh cm-2. An energy management circuit is adopted to boost the output voltage of a single battery, which can power electronic ink display and Bluetooth temperature and humidity sensor. The developed battery can even operate under the extreme conditions, such as being bent and sealed in solid ice. This work offers a path for designing electrodes and electrolyte toward high-performance flexible Ag-Zn batteries.
binder-free electrodes / dendrite-free / flexible Ag-Zn battery / mild electrolyte / quasi-solid-state
[1] |
S. R. A. Ruth, V. R. Feig, H. Tran, Z. Bao, Adv. Funct. Mater. 2020, 30, 2003491.
|
[2] |
Y. Lu, K. Xu, L. Zhang, M. Deguchi, H. Shishido, T. Arie, R. Pan, A. Hayashi, L. Shen, S. Akita, ACS Nano 2020, 14, 10966.
|
[3] |
K. K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo, S. H. Ko, Nat. Commun. 2020,
CrossRef
Google scholar
|
[4] |
H. Zhu, E. S. Shin, A. Liu, D. Ji, Y. Xu, Y. Y. Noh, Adv. Funct. Mater. 2020, 30, 1904588.
|
[5] |
N. M. Nair, I. Khanra, D. Ray, P. Swaminathan, ACS Appl. Mater. Interfaces 2021, 13, 34550.
|
[6] |
L. Yin, K. N. Kim, J. Lv, F. Tehrani, M. Lin, Z. Lin, J.-M. Moon, J. Ma, J. Yu, S. Xu, Nat. Commun. 2021,
CrossRef
Google scholar
|
[7] |
W. Wang, A. Yu, X. Liu, Y. Liu, Y. Zhang, Y. Zhu, Y. Lei, M. Jia, J. Zhai, Z. L. Wang, Nano Energy 2020, 71, 104605.
|
[8] |
K. T. Ding, H. Chan, Y. Zhou, X.-Q. Wang, Y. Cheng, T. Li, G. W. Ho, Nat. Commun. 2020,
CrossRef
Google scholar
|
[9] |
V. Sanchez, C. J. Walsh, R. J. Wood, Adv. Funct. Mater. 2021, 31, 2008278.
|
[10] |
J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. J. E. Guo, E. Science, Energ. Environ. Sci. 2020, 13, 3917.
|
[11] |
P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, Angew. Chem. Int. Ed. 2022, 61, e202200598.
|
[12] |
Z. Liu, L. Qin, B. Lu, X. Wu, S. Liang, J. Zhou, ChemSusChem 2022, 15, e202200348.
|
[13] |
Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, Small Struct. 2021, 2, 2100119.
|
[14] |
C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C. Y. Foo, P. S. Lee, Adv. Energy Mater. 2014, 4, 1301396.
|
[15] |
J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison, J. W. J. E. Long, E. Science, Energ. Environ. Sci. 2014, 7, 1117.
|
[16] |
G. Liang, F. Mo, D. Wang, X. Li, Z. Huang, H. Li, C. Zhi, Energy Storage Mater. 2020, 25, 86.
|
[17] |
J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645.
|
[18] |
C. Li, Q. Zhang, J. Sun, T. Li, S. E. Z. Zhu, B. He, Z. Zhou, Q. Li, Y. Yao, ACS Energy Lett 2018, 3, 2761.
|
[19] |
R. Kumar, J. Shin, L. Yin, J. M. You, Y. S. Meng, J. Wang, Adv. Energy Mater. 2017, 7, 1602096.
|
[20] |
C. Li, Q. Zhang, E. Songfeng, T. Li, Z. Zhu, B. He, Z. Zhou, P. Man, Q. Li, Y. Yao, J. Mater. Chem. A 2019, 7, 2034.
|
[21] |
T. Ye, L. Li, Y. Zhang, Adv. Funct. Mater. 2020, 30, 2000077.
|
[22] |
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.
|
[23] |
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012.
|
[24] |
X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. Brett, D. Han, Z. Weng, G. He, I. P. Parkin, ACS Energy Lett. 2021, 6, 395.
|
[25] |
Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li, M. Zhu, Z. Yue, M. Wu, H.-K. Liu, S.-X. Dou, C. Wu, Chem. Eng. J. 2021, 416, 128062.
|
[26] |
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Angew. Chem. 2021, 133, 2897.
|
[27] |
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1903675.
|
[28] |
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, ACS Nano 2021, 15, 11828.
|
[29] |
Y. Jiang, Z. Wu, F. Ye, R. Pang, L. Zhang, Q. Liu, X. Chang, S. Sun, Z. Sun, L. Hu, Energy Storage Mater. 2021, 42, 286.
|
[30] |
S. Berchmans, A. J. Bandodkar, W. Jia, J. Ram ırez, Y. S. Meng, J. Wang, J. Mater. Chem. A 2014, 2, 15788.
|
[31] |
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu, J. Chen, Adv. Funct. Mater. 2018, 28, 1804975.
|
[32] |
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao, C. P. Wong, Adv. Mater. 2021, 33, 2007559.
|
[33] |
W. Zhou, J. Chen, M. Chen, A. Wang, A. Huang, X. Xu, J. Xu, C.-P. Wong, J. Mater. Chem. A 2020, 8, 8397.
|
[34] |
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. 2019, 131, 15988.
|
[35] |
L. Li, W. Liu, H. Dong, Q. Gui, Z. Hu, Y. Li, J. Liu, Adv. Mater. 2021, 33, 2004959.
|
[36] |
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, Y. Sun, Energy Storage Mater. 2020, 27, 205.
|
[37] |
Y. Qian, C. Meng, J. He, X. Dong, J. Power Sources 2020, 480, 228871.
|
[38] |
Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li, M. Zhu, Z. Yue, M. Wu, H.-K. Liu, S.-X. Dou, Chem. Eng. J. 2021, 416, 128062.
|
[39] |
Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.
|
[40] |
V. Radmilović, K. Popov, M. Pavlović, A. Dimitrov, S. H. Jordanov, J. Solid State Electrochem. 1998, 2, 162.
|
[41] |
S.-F. Yang, C.-G. Niu, D.-W. Huang, H. Zhang, C. Liang, G.-M. Zeng, Environ. Sci. Nano 2017, 4, 585.
|
[42] |
R. Kumar, K. M. Johnson, N. X. Williams, V. Subramanian, Adv. Energy Mater. 2019, 9, 1803645.
|
[43] |
Y. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Adv. Energy Mater. 2019, 9, 1802605.
|
[44] |
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan, D. Wang, Z. Huang, X. Li, J. Fan, C. Zhi, Adv. Mater. 2019, 31, 1903778.
|
[45] |
Z. Pan, J. Yang, J. Jiang, Y. Qiu, J. Wang, Energy 2020, 18, 100523.
|
[46] |
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, Adv. Mater. 2017, 29, 1702698.
|
[47] |
J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu, J. Wang, Adv. Mater. 2016, 28, 8732.
|
[48] |
H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Nano Res. 2015, 8, 1148.
|
[49] |
Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, C. Zhang, L. Tang, J. Luo, B. Song, Nano Lett. 2017, 17, 2719.
|
[50] |
Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Adv. Mater. 2013, 25, 2326.
|
/
〈 | 〉 |