Characteristic Study of Self-Powered Sensors Based on Native Protein Composite Film

Jiehui Xue, Huijing Xiang, Yanrong Zhang, Jun Yang, Xia Cao, Zhonglin Wang

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12492. DOI: 10.1002/eem2.12492
RESEARCH ARTICLE

Characteristic Study of Self-Powered Sensors Based on Native Protein Composite Film

Author information +
History +

Abstract

Flexible electronic sensors composed of flexible film and conductive materials play an increasingly important role in wearable and internet information transmission. It has received more and more attention and made some progress over the decades. However, it is still a great challenge to prepare biocompatible and highly transparent conductive films. Egg white is a pure natural protein-rich material. Hydroxypropylmethyl cellulose has a good compatibility and high transparency, which is an ideal material for flexible sensors. Here, we overcome the problem of poor mechanical flexibility and electrical conductivity of protein, and develop a high transparency and good flexibility hydroxypropylmethyl cellulose/egg white protein composite membrane-based triboelectric nanogenerator (‘X’-TENG). The experimental results show that the flexible pressure sensor based on ‘X’-TENG has a high sensitivity, fast response speed, and low detection limit. It can even be used as a touch/pressure sensing artificial electronic skin. It can also be made into an intelligent waffle keyboard for recording and tracking users of the keyboard. Our strategy may provide a new way to easily build flexible electronic sensors and move toward practical applications.

Keywords

flexible sensors / intelligent sensing / natural protein-rich material / triboelectric nanogenerators

Cite this article

Download citation ▾
Jiehui Xue, Huijing Xiang, Yanrong Zhang, Jun Yang, Xia Cao, Zhonglin Wang. Characteristic Study of Self-Powered Sensors Based on Native Protein Composite Film. Energy & Environmental Materials, 2024, 7(1): 12492 https://doi.org/10.1002/eem2.12492

References

[1]
H. C. Tung, K. F. Tsang, K. L. Lam, H. Y. Tung, B. Y. Li, L. F. Yeung, K. T. Ko, W. H. Lau, V. Rakocevic, Sensors (Basel) 2014, 14, 2397.
[2]
S. Vellappally, A. A. Al Kheraif, S. Anil, A. A. Wahba, Measurement 2019, 135, 672.
[3]
S. Wang, M. He, B. Weng, L. Gan, Y. Zhao, N. Li, Y. Xie, Nanomaterials (Basel) 2018, 8.
[4]
Z. Tian, J. He, X. Chen, T. Wen, C. Zhai, Z. Zhang, J. Cho, X. Chou, C. Xue, RSC Adv. 2018, 8, 2950.
[5]
Y.-C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo, Z. L. Wang, Adv. Funct. Mater. 2017,
CrossRef Google scholar
[6]
L. Dhakar, P. Pitchappa, F. E. H. Tay, C. Lee, Nano Energy 2016, 19, 532.
[7]
Z. Zhang, J. Cai, Curr. Appl. Phys. 2021,
CrossRef Google scholar
[8]
S.-B. Jeon, S.-J. Park, W.-G. Kim, I.-W. Tcho, I.-K. Jin, J.-K. Han, D. Kim, Y.-K. Choi, Nano Energy 2018, 53, 596.
[9]
J. Zhong, Q. Zhong, F. Fan, Y. Zhang, S. Wang, B. Hu, Z. L. Wang, J. Zhou, Nano Energy 2012, 2, 491.
[10]
Z. Chen, Y. Cao, W. Yang, L. An, H. Fan, Y. Guo, J. Mater. Chem. A 2022, 10, 799.
[11]
P. Supraja, R. R. Kumar, S. Mishra, D. Haranath, P. R. Sankar, K. Prakash, N. Jayarambabu, T. V. Rao, K. U. Kumar, Sensors Actuators A Phys. 2022, 335, 113368.
[12]
J.-N. Kim, J. Lee, T. W. Go, A. Rajabi-Abhari, M. Mahato, J. Y. Park, H. Lee, I.-K. Oh, Nano Energy 2020,
CrossRef Google scholar
[13]
S. Pongampai, T. Charoonsuk, N. Pinpru, P. Pulphol, W. Vittayakorn, P. Pakawanit, N. Vittayakorn, Compos. Part B 2021, 208, 108602.
[14]
R. Wang, S. Gao, Z. Yang, Y. Li, W. Chen, B. Wu, W. Wu, Adv. Mater. 2018, 30, 1706267.
[15]
K. Yan, X. Li, X.-X. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, Y.-Z. Long, J. Mater. Chem. A 2020, 8, 22745.
[16]
R. Ccorahua, J. Huaroto, C. Luyo, M. Quintana, E. A. Vela, Nano Energy 2019, 59, 610.
[17]
N. Wang, Y. Zheng, Y. Feng, F. Zhou, D. Wang, Nano Energy 2020,
CrossRef Google scholar
[18]
A. S. Bhavya, H. Varghese, A. Chandran, K. P. Surendran, Nano Energy 2021, 90, 106628.
[19]
Y. Chi, K. Xia, Z. Zhu, J. Fu, H. Zhang, C. Du, Z. Xu, Microelectron. Eng. 2019, 216, 111059.
[20]
X. Shi, S. Chen, H. Zhang, J. Jiang, Z. Ma, S. Gong, ACS Sustain. Chem. Eng. 2019, 7, 18657.
[21]
Y. Yang, D. Zhang, D. Wang, Z. Xu, J. Zhang, J. Mater. Chem. A 2021, 9, 14495.
[22]
A. Yu, M. Song, Y. Zhang, Y. Zhang, L. Chen, J. Zhai, Z. L. Wang, Nano Res. 2014, 8, 765.
[23]
A. Wang, J. Chen, L. Wang, J. Han, W. Su, A. Li, P. Liu, L. Duan, C. Xu, Z. Zeng, Appl. Energy 2022,
CrossRef Google scholar
[24]
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu, X. Pu, H. Yang, Q. Tang, H. Yang, H. Guo, C. Hu, Nat. Commun. 2020, 11, 4606.
[25]
C. Liu, J. Li, L. Che, S. Chen, Z. Wang, X. Zhou, Nano Energy 2017, 41, 359.
[26]
C. Ye, Q. Xu, J. Ren, S. Ling, Adv. Fiber Mater. 2020, 2, 24.
[27]
M. Su, B. Kim, ACS Appl. Nano Mater. 2020, 3, 9759.
[28]
F. He, X. You, H. Gong, Y. Yang, T. Bai, W. Wang, W. Guo, X. Liu, M. Ye, ACS Appl. Mater. Interfaces 2020, 12, 6442.
[29]
Q. Niu, L. Huang, S. Lv, H. Shao, S. Fan, Y. Zhang, Nano Energy 2020, 74, 104837.
[30]
S. Yan, Z. Zhang, X. Shi, Y. Xu, Y. Li, X. Wang, Q. Li, L. S. Turng, Int. J. Energy Res. 2021, 45, 11053.
[31]
T. Charoonsuk, S. Pongampai, P. Pakawanit, N. Vittayakorn, Nano Energy 2021, 89, 106430.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/