Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection

Xieming Xu, Yiheng Wu, Yi Zhang, Xiaohui Li, Fang Wang, Xiaoming Jiang, Shaofan Wu, Shuaihua Wang

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12487. DOI: 10.1002/eem2.12487
RESEARCH ARTICLE

Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection

Author information +
History +

Abstract

Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles. Recently, two-dimensional (2D) perovskites have been shown to be promising materials for medical X-ray imaging, but they are mostly used in low-energy (≤130 keV) regions. Direct detection of MeV X-rays, which ensure thorough penetration of the thick shell walls of containers, trucks, and aircraft, is also highly desired in practical industrial applications. Unfortunately, scintillation semiconductors for high-energy X-ray detection are currently scarce. Here, This paper reports a 2D (C4H9NH3)2PbBr4 single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGyair s-1 (50 keV) and 15.24 mGyair s-1 (9 MeV). The (C4H9NH3)2PbBr4 single-crystal detector with a vertical structure is used for high-performance X-ray imaging, delivering a good spatial resolution of 4.3 lp mm-1 in a plane-scan imaging system. Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages, leading to a sensitivity of 46.90 μC Gyair-1 cm-2 (-1.16 V μm-1) with 9 MeV X-ray radiation, demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.

Keywords

MeV X-ray detection / single-crystal X-ray detectors / two-dimensional perovskites / X-ray imaging

Cite this article

Download citation ▾
Xieming Xu, Yiheng Wu, Yi Zhang, Xiaohui Li, Fang Wang, Xiaoming Jiang, Shaofan Wu, Shuaihua Wang. Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection. Energy & Environmental Materials, 2024, 7(1): 12487 https://doi.org/10.1002/eem2.12487

References

[1]
X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 2021, 590, 410.
[2]
C. Ma, H. Li, M. Chen, Y. Liu, K. Zhao, S. Liu, Adv. Funct. Mater 2022,
CrossRef Google scholar
[3]
X. Wang, H. Shi, H. Ma, W. Ye, L. Song, J. Zan, X. Yao, X. Ou, G. Yang, Z. Zhao, M. Singh, C. Lin, H. Wang, W. Jia, Q. Wang, J. Zhi, C. Dong, X. Jiang, Y. Tang, X. Xie, Y. Yang, J. Wang, Q. Chen, Y. Wang, H. Yang, G. Zhang, Z. An, X. Liu, W. Huang, Nat. Photon. 2021, 15, 187.
[4]
K. M. Oh, D. K. Kim, J. W. Shin, S. U. Heo, J. S. Kim, J. G. Park, S. H. Nam, J. Instrum. 2014, 9, P01010.
[5]
T. Kreiliger, C. V. Falub, F. Isa, G. Isella, D. Chrastina, R. Bergamaschini, A. Marzegalli, R. Kaufmann, P. Niedermann, A. Neels, E. Muller, M. Meduna, A. Dommann, L. Miglio, H. von Kanela, J. Instrum. 2014, 9, C03019.
[6]
S. O. Kasap, J. Phys. D. Appl. Phys. 2000, 33, 2853.
[7]
M. Yao, J. Jiang, D. Xin, Y. Ma, W. Wei, X. Zheng, L. Shen, Nano Lett. 2021, 21, 3947.
[8]
S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas, R. Verbeek, S. Shanmugam, H. Akkerman, E. Meulenkamp, J. E. Huerdler, M. Acharya, M. Garcia-Batlle, O. Almora, A. Guerrero, G. Garcia-Belmonte, W. Heiss, O. Schmidt, S. F. Tedde, Nat. Electron. 2021, 4, 681.
[9]
Y. X. Zhang, Y. C. Liu, Z. Xu, H. C. Ye, Q. X. Li, M. X. Hu, Z. Yang, S. Z. Liu, J. Mater. Chem. C 2019, 7, 1584.
[10]
S. Shrestha, R. Fischer, G. J. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. W. Chen, S. F. Tedde, O. Schmidt, R. Hock, M. Ruhrig, M. Goken, W. Heiss, G. Anton, C. J. Brabec, Nat. Photon. 2017, 11, 436.
[11]
W. Wei, Y. Zhang, Q. Xu, H. T. Wei, Y. J. Fang, Q. Wang, Y. H. Deng, T. Li, A. Gruverman, L. Cao, J. S. Huang, Nat. Photon. 2017, 11, 315.
[12]
Y. Liu, X. P. Zheng, Y. J. Fang, Y. Zhou, Z. Y. Ni, X. Xiao, S. S. Chen, J. S. Huang, Nat. Commun. 2021,
CrossRef Google scholar
[13]
J. M. Wu, L. X. Wang, A. B. Feng, S. Yang, N. Li, X. M. Jiang, N. A. Q. Liu, S. D. Xie, X. B. Guo, Y. J. Fang, Z. L. Chen, D. R. Yang, X. T. Tao, Adv. Funct. Mater. 2022, 32, 2109149.
[14]
Y. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, N. G. Park, Nature 2017, 550, 87.
[15]
J. J. Zhao, L. Zhao, Y. H. Deng, X. Xiao, Z. Y. Ni, S. Xu, J. S. Huang, Nat. Photon. 2020, 14, 612.
[16]
N. J. Cherepy, Z. M. Seeley, S. Hok, D. Schneberk, P. Kerr, S. P. O’Neal, I. Oksuz, M. Bisbee, L. R. Cao, S. A. Payne, R. D. Sanner, G. Stone, B. F. Hobson, G. Guethlein, J. Hall, R. Stoneking, J. Mintz, C. McNamee, P. A. Thelin, presented at Conf. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXII, Electr Network, August 2020.
[17]
T. Wu, M. Ahmadi, B. Hu, J. Mater. Chem. C 2018, 6, 8042.
[18]
H. Y. Li, J. M. Song, W. T. Pan, D. R. Xu, W. A. Zhu, H. T. Wei, B. Yang, Adv. Mater. 2020, 32, 2003790.
[19]
S. Meloni, T. Moehl, W. Tress, M. Franckevicius, M. Saliba, Y. H. Lee, P. Gao, M. K. Nazeeruddin, S. M. Zakeeruddin, U. Rothlisberger, M. Graetzel, Nat. Commun. 2016,
CrossRef Google scholar
[20]
Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, ACS Energy Lett. 2017, 2, 1571.
[21]
Y. Shen, Y. C. Liu, H. C. Ye, Y. T. Zheng, Q. Wei, Y. D. Xia, Y. H. Chen, K. Zhao, W. Huang, S. Z. Liu, Angew. Chem. Int. Ed. 2020, 59, 14896.
[22]
I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232.
[23]
Y. H. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, T. Bein, P. Muller-Buschbaum, P. Docampo, ACS Nano 2016, 10, 5999.
[24]
R. Z. Zhuang, X. J. Wang, W. B. Ma, Y. H. Wu, X. Chen, L. H. Tang, H. M. Zhu, J. Y. Liu, L. L. Wu, W. Zhou, X. Liu, Y. Yang, Nat. Photon. 2019, 13, 602.
[25]
N. Allec, S. Abbaszadeh, K. S. Karim, Phys. Med. Biol. 2011, 56, 5903.
[26]
D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
[27]
M. I. Saidaminov, A. L. Abdelhady, G. Maculan, O. M. Bakr, Chem. Commun. 2015, 51, 17658.
[28]
H. T. Wei, Y. J. Fang, P. Mulligan, W. Chuirazzi, H. H. Fang, C. C. Wang, B. R. Ecker, Y. L. Gao, M. A. Loi, L. Cao, J. S. Huang, Nat. Photon. 2016, 10, 333.
[29]
W. C. Pan, H. D. Wu, J. J. Luo, Z. Z. Deng, C. Ge, C. Chen, X. W. Jiang, W. J. Yin, G. D. Niu, L. J. Zhu, L. X. Yin, Y. Zhou, Q. G. Xie, X. X. Ke, M. L. Sui, J. Tang, Nat. Photon. 2017, 11, 726.
[30]
H. D. Wu, Y. S. Ge, G. D. Niu, J. Tang, Matter 2021, 4, 144.
[31]
B. Yang, W. C. Pan, H. D. Wu, G. D. Niu, J. H. Yuan, K. H. Xue, L. X. Yin, X. Y. Du, X. S. Miao, X. Q. Yang, Q. G. Xie, J. Tang, Nat. Commun. 2019,
CrossRef Google scholar
[32]
Y. C. Liu, Y. X. Zhang, Z. Yang, J. Cui, H. D. Wu, X. D. Ren, K. Zhao, J. S. Feng, J. Tang, Z. Xu, S. Z. Liu, Adv. Opt. Mater. 2020, 8, 2000814.
[33]
X. Song, Q. Y. Cui, Y. C. Liu, Z. Xu, H. G. Cohen, C. Ma, Y. Y. Fan, Y. X. Zhang, H. C. Ye, Z. H. Peng, R. P. Li, Y. H. Chen, J. P. Wang, H. M. Sun, Z. Yang, Z. K. Liu, Z. P. Yang, W. Huang, G. Hodes, S. Z. Liu, K. Zhao, Adv. Mater. 2020, 32, 2003353.
[34]
Y. C. Liu, Y. X. Zhang, X. J. Zhu, J. S. Feng, I. Spanopoulos, W. J. Ke, Y. H. He, X. D. Ren, Z. Yang, F. W. Xiao, K. Zhao, M. Kanatzidis, S. Z. Liu, Adv. Mater. 2021, 33, 2006010.
[35]
X. J. Zheng, W. Zhao, P. Wang, H. R. Tan, M. I. Saidaminov, S. J. Tie, L. G. Chen, Y. F. Peng, J. D. Long, W. H. Zhang, J. Energy. Chem. 2020, 49, 299.
[36]
P. H. Wangyang, H. Sun, X. H. Zhu, D. Y. Yang, X. Y. Gao, W. Y. Liu, Y. Chen, H. B. Tian, S. B. Huanglong, Phys. Status Solidi A 2017, 214, 1700538.
[37]
H. T. Wei, J. S. Huang, Nat. Commun. 2019,
CrossRef Google scholar
[38]
J. Schlipf, Y. H. Hu, S. Pratap, L. Biessmann, N. Hohn, L. Porcar, T. Bein, P. Docampo, P. Muller-Buschbaum, ACS Appl. Energy Mater. 2019, 2, 1011.
[39]
Y. B. Yuan, J. Chae, Y. C. Shao, Q. Wang, Z. G. Xiao, A. Centrone, J. S. Huang, Adv. Energy Mater. 2015, 5, 1500615.
[40]
J. Jang, S. Ji, G. K. Grandhi, H. B. Cho, W. B. Im, J. U. Park, Adv. Mater. 2021, 33, 2008539.
[41]
G. Y. Chen, Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 241, 810.
[42]
S. V. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, P. Burstein, A. Y. Smirnov, P. Amer Inst, presented at AIP Conf. Proc., Grapevine, August 2019.
[43]
L. Li, T. Zhao, Z. Chen, Ieee Access 2018, 6, 45534.
[44]
Consultation WHO , Bull. W.H.O 1990, 68, 297.
[45]
N. Chaudhary, D. Bhattacharjee, V. Yadav, S. D. Sharma, S. Acharya, K. P. Dixit, K. C. Mittal, Indian J. Pure Appl. Phys. 2012, 50, 517.
[46]
M. Bruzzi, C. Talamonti, Front. Phys. 2021, 9, 36.
[47]
G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
[48]
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
[49]
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[50]
G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978.
[51]
G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/