A Web-like Three-dimensional Binder for Silicon Anode in Lithium-ion Batteries

Liyuan Li, Tao Li, Yifan Sha, Baozeng Ren, Lan Zhang, Suojiang Zhang

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12482. DOI: 10.1002/eem2.12482
RESEARCH ARTICLE

A Web-like Three-dimensional Binder for Silicon Anode in Lithium-ion Batteries

Author information +
History +

Abstract

Si anode is of paramount importance for advanced energy-dense lithium-ion batteries (LIBs). However, the large volume change as well as stress generates during its lithiation-delithiation process poses a great challenge to the long-term cycling and hindering its application. Herein this work, a composite binder is prepared with a soft component, guar gum (GG), and a rigid linear polymer, anionic polyacrylamide (APAM). Rich hydroxy, carboxyl, and amide groups on the polymer chains not only enable intermolecular crosslinking to form a web-like binder, A2G1, but also realize strong chemical binding as well as physical encapsulating to Si particles. The resultant electrode shows limited thickness change of merely 9% on lithiation and almost recovers its original thickness on delithiation. It demonstrates high reversible capacity of 2104.3 mAh g-1 after 100 cycles at a current density of 1800 mA g-1, and in constant capacity (1000 mAh g-1) test, it also shows a long life of 392 cycles. Therefore, this soft-hard combining web-like binder illustrates its great potential in the future applications.

Keywords

anionic polyacrylamide / lithium-ion batteries / Si anode / thickness change / web-like binder

Cite this article

Download citation ▾
Liyuan Li, Tao Li, Yifan Sha, Baozeng Ren, Lan Zhang, Suojiang Zhang. A Web-like Three-dimensional Binder for Silicon Anode in Lithium-ion Batteries. Energy & Environmental Materials, 2024, 7(1): 12482 https://doi.org/10.1002/eem2.12482

References

[1]
Y. Zhao, Z. Liang, Y. Kang, Y. Zhou, Y. Li, X. He, L. Wang, W. Mai, X. Wang, G. Zhou, J. Wang, J. Li, N. Tavajohi, B. Li, Energy Stor. Mater. 2021, 35, 353.
[2]
Y. Yang, S. Wu, Y. Zhang, C. Liu, X. Wei, D. Luo, Z. Lin, Chem. Eng. J. 2021, 406, 126807.
[3]
S. Li, Y.-M. Liu, Y.-C. Zhang, Y. Song, G. K. Wang, Y. X. Liu, Z. G. Wu, B. H. Zhong, Y. J. Zhong, X. D. Guo, J. Power Sources 2021, 485, 229331.
[4]
C. Gao, H. Liu, S. Bi, H. Li, C. Ma, Green Energy Environ. 2021, 6, 114.
[5]
S. Jiang, B. Hu, Z. Shi, W. Chen, Z. Zhang, L. Zhang, Adv. Funct. Mater. 2019, 30, 1908558.
[6]
M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966.
[7]
M. Kim, Z. Yang, I. Bloom, J. Electrochem. Soc. 2021, 168, 010523.
[8]
H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Chem. Rev. 2018, 118, 8936.
[9]
S. Chen, H. Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, J. Power Sources 2020, 450, 227671.
[10]
Z. Wu, J. Luo, J. Peng, H. Liu, B. Chang, X. Wang, Energy Environ. 2020, 6, 517.
[11]
Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, S. I. Hirano, Joule 2018, 2, 950.
[12]
A. N. Preman, H. Lee, J. Yoo, I. T. Kim, T. Saito, S. K. Ahn, J. Mater. Chem. A 2020, 8, 25548.
[13]
S. Chae, Y. Xu, R. Yi, H. S. Lim, D. Velickovic, X. Li, Q. Li, C. Wang, J. G. Zhang, Adv. Mater. 2021, 33, 2103095.
[14]
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 2021, 11, 2101126.
[15]
D. K. Wang, C. L. Zhou, B. Cao, Y. C. Xu, D. H. Zhang, A. Li, J. S. Zhou, Z. K. Ma, X. H. Chen, H. H. Song, Energy Stor. Mater. 2020, 24, 312.
[16]
J. Ma, H. Zhang, Y. Li, L. Hu, Q. Wang, W. Zhang, L. Yang, G. R. Xu, Y. S. He, T. Lou, Z.-F. Ma, Green Chem. Eng. 2021, 2, 327.
[17]
S. Chae, S. H. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed. 2020, 59, 110.
[18]
Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. Wu, F. Shi, R. Zhang, Z. Zhu, K. So, Y. Cui, J. Li, Energ. Environ. Sci. 2017, 10, 580.
[19]
G. Yang, S. Frisco, R. Tao, N. Philip, T. H. Bennett, C. Stetson, J. G. Zhang, S.-D. Han, G. Teeter, S. P. Harvey, Y. Zhang, G. M. Veith, J. Nanda, ACS Energy Lett. 2021, 6, 1684.
[20]
H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M. H. Engelhard, S. D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J. G. Zhang, W. Xu, Adv. Energy Mater. 2019, 9, 1900784.
[21]
T. Liu, Q. Chu, C. Yan, S. Zhang, Z. Lin, J. Lu, Adv. Energy Mater. 2019, 9, 9.
[22]
H. Huang, Z. Li, S. Gu, J. Bian, Y. Li, J. Chen, K. Liao, Q. Gan, Y. Wang, S. Wu, Z. Wang, W. Luo, R. Hao, Z. Wang, G. Wang, Z. Lu, Adv. Energy Mater. 2021, 11, 2101864.
[23]
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, G. Yushin, ACS Appl. Mater. Interfaces 2010, 2, 3004.
[24]
H. Wang, B. Wu, X. Wu, Q. Zhuang, T. Liu, Y. Pan, G. Shi, H. Yi, P. Xu, Z. Xiong, S. L. Chou, B. Wang, Small 2022, 18, 2101680.
[25]
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 2011, 334, 75.
[26]
J. Liu, Q. Zhang, T. Zhang, J. T. Li, L. Huang, S. G. Sun, Adv. Funct. Mater. 2015, 25, 3599.
[27]
Y. Wu, D. U. Shah, C. Liu, Z. Yu, J. Liu, X. Ren, M. J. Rowland, C. Abell, M. H. Ramage, O. A. Scherman, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 8163.
[28]
S. Choi, T. W. Kwon, A. Coskun, J. W. Choi, Science 2017, 357, 279.
[29]
H. Chen, Z. Wu, Z. Su, L. Hencz, S. Chen, C. Yan, S. Zhang, J. Energy Chem. 2021, 62, 127.
[30]
H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan, M. Al-Mamun, Y. Tang, S. Zhang, Nano Energy 2021, 81, 105654.
[31]
M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu, S. Li, M. Wu, X. Song, C. Yan, G. Liu, S. Zhang, Nano Energy 2015, 12, 178.
[32]
H. Lee, B. P. Lee, P. B. Messersmith, Nature 2007, 448, 338.
[33]
L. Feng, H. Zheng, B. Gao, S. Zhang, C. Zhao, Y. Zhou, B. Xu, RSC Adv. 2017, 7, 28918.
[34]
T. Yue, X. Wu, X. Chen, T. Liu, Fortschr. Mineral. 2018, 8, 421.
[35]
B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou, X. Gao, J. Lu, X. Zhan, X. He, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2104433.
[36]
J. Feng, D. Wang, Q. Zhang, J. Liu, Y. Wu, L. Wang, ACS Appl. Mater. Interfaces 2021, 13, 44312.
[37]
H. Wang, D. Wei, B. Zhang, Z. Ji, L. Wang, M. Ling, C. Liang, ACS Appl. Mater. Interfaces 2021, 13, 37704.
[38]
R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang, W. Q. Han, ACS Appl. Mater. Interfaces 2019, 11, 14051.
[39]
L. Li, T. Li, Y. Sha, C. Zhang, B. Ren, L. Zhang, S. Zhang, Ind. Eng. Chem. Res. 2021, 60, 17399.
[40]
Z. Li, Z. Wan, X. Zeng, S. Zhang, L. Yan, J. Ji, H. Wang, Q. Ma, T. Liu, Z. Lin, M. Ling, C. Liang, Nano Energy 2021, 79, 105430.
[41]
Y. Qian, S. Hu, X. Zou, Z. Deng, Y. Xu, Z. Cao, Y. Kang, Y. Deng, Q. Shi, K. Xu, Y. Deng, Energy Stor. Mater. 2019, 20, 208.
[42]
H. Q. Pham, M. Mirolo, M. Tarik, M. El Kazzi, S. Trabesinger, Energy Stor. Mater. 2020, 33, 216.
[43]
Z. Cao, X. Zheng, Q. Qu, Y. Huang, H. Zheng, Adv. Mater. 2021, 18, 2101680.
[44]
J. Ryu, S. Kim, J. Kim, S. Park, S. Lee, S. Yoo, J. Kim, N. S. Choi, J. H. Ryu, S. Park, Adv. Funct. Mater. 2019, 30, 1908433.
[45]
W. Ji, H. Qu, X. Zhang, D. Zheng, D. Qu, Small Methods 2021, 5, 2100518.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/