A Web-like Three-dimensional Binder for Silicon Anode in Lithium-ion Batteries
Liyuan Li , Tao Li , Yifan Sha , Baozeng Ren , Lan Zhang , Suojiang Zhang
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12482
A Web-like Three-dimensional Binder for Silicon Anode in Lithium-ion Batteries
Si anode is of paramount importance for advanced energy-dense lithium-ion batteries (LIBs). However, the large volume change as well as stress generates during its lithiation-delithiation process poses a great challenge to the long-term cycling and hindering its application. Herein this work, a composite binder is prepared with a soft component, guar gum (GG), and a rigid linear polymer, anionic polyacrylamide (APAM). Rich hydroxy, carboxyl, and amide groups on the polymer chains not only enable intermolecular crosslinking to form a web-like binder, A2G1, but also realize strong chemical binding as well as physical encapsulating to Si particles. The resultant electrode shows limited thickness change of merely 9% on lithiation and almost recovers its original thickness on delithiation. It demonstrates high reversible capacity of 2104.3 mAh g-1 after 100 cycles at a current density of 1800 mA g-1, and in constant capacity (1000 mAh g-1) test, it also shows a long life of 392 cycles. Therefore, this soft-hard combining web-like binder illustrates its great potential in the future applications.
anionic polyacrylamide / lithium-ion batteries / Si anode / thickness change / web-like binder
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |