Zn Dissolution-Passivation Behavior with ZnO Formation via In Situ Characterizations

Tanyanyu Wang, Masahiro Kunimoto, Masahiro Yanagisawa, Masayuki Morita, Takeshi Abe, Takayuki Homma

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (1) : 12481. DOI: 10.1002/eem2.12481
RESEARCH ARTICLE

Zn Dissolution-Passivation Behavior with ZnO Formation via In Situ Characterizations

Author information +
History +

Abstract

In this study, ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization. The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model, whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges. Initially, the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at ~255 mV. The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface. During the pseudo passivation, an intense current oscillation is observed. Further, blink-like color changes between yellow and dark blue are revealed for the first time, implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups. The as-formed ZnOs then experience a dissolution-reformation evolution, during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies. Eventually, oxide densification is realized, contributing to the Zn passivation. This study provides new insights into the Zn dissolution-passivation behavior, which is critical for the future optimization of Zn batteries.

Keywords

in situ characterization / Zn dissolution and passivation / ZnO formation

Cite this article

Download citation ▾
Tanyanyu Wang, Masahiro Kunimoto, Masahiro Yanagisawa, Masayuki Morita, Takeshi Abe, Takayuki Homma. Zn Dissolution-Passivation Behavior with ZnO Formation via In Situ Characterizations. Energy & Environmental Materials, 2024, 7(1): 12481 https://doi.org/10.1002/eem2.12481

References

[1]
V. Caramia, B. Bozzini, Mater. Renew. Sustain. Energy 2014,
CrossRef Google scholar
[2]
M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.
[3]
X. G. Zhang, J. Power Sources 2006, 163, 591.
[4]
C. C. Yang, S. J. Lin, J. Power Sources 2002, 112, 174.
[5]
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy 2019, 62, 550.
[6]
Y. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257.
[7]
P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, H. Pang, J. Mater. Chem. A 2017, 5, 7651.
[8]
J. S. Lee, S. Tai Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
[9]
D. Stock, S. Dongmo, J. Janek, D. Schröder, ACS Energy Lett. 2019, 4, 1287.
[10]
P. Pei, K. Wang, Z. Ma, Appl. Energy 2014, 128, 315.
[11]
S. Hosseini, S. M. Soltani, Y. Y. Li, Chem. Eng. J. 2021, 408, 127241.
[12]
K. J. Vetter, Elektrochemische Kinetik, Springer-Verlag, Berlin Heidelberg, Germany 1961.
[13]
Z. Zhao, X. Fan, J. Ding, W. Hu, C. Zhong, J. Lu, ACS Energy Lett. 2019, 4, 2259.
[14]
M. Bockelmann, L. Reining, U. Kunz, T. Turek, Electrochim. Acta 2017, 237, 276.
[15]
T. P. Dirkse, N. A. Hampson, Electrochim. Acta 1971, 16, 2049.
[16]
T. P. Dirkse, N. A. Hampson, Electrochim. Acta 1971, 17, 387.
[17]
M. Hull, J. E. Ellison, J. E. Toni, J. Electrochem. Soc. 1970, 117, 192.
[18]
M. B. Liu, G. Cook, N. Yao, J. Electrochem. Soc. 1981, 128, 1663.
[19]
S. Thomas, I. Cole, M. Sridhar, N. Birbilis, Electrochim. Acta 2013, 97, 192.
[20]
R. W. Powers, M. W. Breiter, J. Electrochem. Soc. 1969, 116, 719.
[21]
S. Szpak, C. Gabriel, J. Electrochem. Soc. 1979, 126, 1914.
[22]
C. Cachet, B. Saidani, R. Wiart, J. Electrochem. Soc. 1991, 138, 678.
[23]
C. Cachet, B. Saidani, R. Wiart, J. Electrochem. Soc. 1992, 139, 644.
[24]
A. Nakata, K. Fukuda, H. Murayama, H. Tanida, T. Yamane, H. Arai, Y. Uchimoto, K. Sakurai, Z. Ogumi, Electrochemistry 2015, 83, 849.
[25]
L. M. Baugh, A. R. Baikie, Electrochim. Acta 1985, 30, 1173.
[26]
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 5374.
[27]
W.-B. Cai, D. A. Scherson, J. Electrochem. Soc. 2003, 150, B217.
[28]
W.-B. Cai, Q. Shi, M. F. Mansuetto, D. A. Scherson, Electrochem. Solid- State Lett. 2000, 3, 319.
[29]
A. Hugot-Le Goff, S. Joiret, B. Saidani, R. Wiart, J. Electroanal. Chem. 1989, 263, 127.
[30]
V. Russo, M. Ghidelli, P. Gondoni, C. S. Casari, A. Li Bassi, J. Appl. Phys. 2014, 115, 73508.
[31]
T. Otani, T. Yasuda, M. Kunimoto, M. Yanagisawa, Y. Fukunaka, T. Homma, Electrochim. Acta 2019, 305, 90.
[32]
Q. Shi, L. J. Rendek, W.-B. Cai, D. A. Scherson, Electrochem. Solid-State Lett. 2003, 6, E35.
[33]
Q. Shi, D. A. Scherson, Electrochem. Solid-State Lett. 2005, 8, A122.
[34]
A. J. J. Jebaraj, D. A. Scherson, Acc. Chem. Res. 2013, 46, 1192.
[35]
D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, R. Martins, Sol. Energy Mater. Sol. Cells 2017, 163, 255.
[36]
Y. Peng, Y. Wang, Q. G. Chen, Q. Zhu, A. W. Xu, Cryst. Eng. Comm. 2014, 16, 7906.
[37]
M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, T. Srécković, J. Raman Spectrosc. 2010, 41, 914.
[38]
M. Kunimoto, M. Yanagisawa, T. Homma. ECS Meeting Abstract, MA 2020-01, 1211.
[39]
I. Sanghi, M. Fleischmann, Electrochim. Acta 1958, 1, 161.
[40]
M. Mokaddem, P. Volovitch, K. Ogle, Electrochim. Acta 2010, 55, 7867.
[41]
A. Nakata, H. Arai, H. Murayama, K. Fukuda, T. Yamane, T. Hirai, Y. Uchimoto, J. Yamaki, Z. Ogumi, APL Mater. 2018, 6, 047703.
[42]
A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, Nanotechnology 2007, 18, 095702.
[43]
W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, J. Cryst. Growth 1999, 203, 186.
[44]
M. Cai, S. M. Park, J. Electrochem. Soc. 1996, 143, 3895.
[45]
R. C. V. Piatti, J. J. Podesta, A. J. Arvia, Electrochim. Acta 1980, 25, 827.
[46]
R. Wittman, Ph.D Thesis, University of Tennessee, August, 2019.
[47]
L. F. Lin, C. Y. Chao, D. D. Macdonald, J. Electrochem. Soc. 1981, 128, 1194.
[48]
C. Y. Chao, L. F. Lin, D. D. Macdonald, J. Electrochem. Soc. 1981, 128, 1187.
[49]
C. G. Smith, Ph. D Thesis, California University, August, 1978.
[50]
Y. Chen, P. Schneider, B.-J. Liu, S. Borodin, B. Renc, A. Erbe, Phys. Chem. Chem. Phys. 2013, 15, 9812.
[51]
N. H. Alvi, O. Nur, M. Willander, Nanoscale Res. Lett. 2011,
CrossRef Google scholar
[52]
R. D. Armstrong, Corros. Sci. 1971, 11, 693.
[53]
R. S. Das, Y. K. Agrawal, Vib. Spectrosc. 2011, 57, 163.
[54]
Y. Maruyama, W. Kanematsu, J. Appl. Phys. 2011, 110, 103107.
[55]
H. Fry, M. Whitaker, J. Electrochem. Soc. 1959, 106, 606.
[56]
M. Bockelmann, M. Becker, L. Reining, U. Kunz, T. Turek, J. Electrochem. Soc. 2019, 166, A1132.
[57]
A. R. Mainar, E. Iruin, L. C. Colmenares, J. A. Blázquez, H. J. Grande, Energy Sci. Eng. 2018, 6, 174.
[58]
A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. D. Meatza, A. Kvasha, A. Guerfi, J. A. Blázquez, Int. Energy Res. 2016, 40, 1032.

RIGHTS & PERMISSIONS

2022 2022 Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/