3D Foam-Based MXene Architectures: Structural and Electrolytic Engineering for Advanced Potassium-Ion Storage

Peng Zhang , Yanmeng Peng , Qizhen Zhu , Razium Ali Soomro , Ning Sun , Bin Xu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12379

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12379 DOI: 10.1002/eem2.12379
RESEARCH ARTICLE

3D Foam-Based MXene Architectures: Structural and Electrolytic Engineering for Advanced Potassium-Ion Storage

Author information +
History +
PDF

Abstract

MXenes are emerging rapidly as promising electrode materials for energy storage due to their high electronic conductivity and rich surface chemistry, but their potassium storage performance is unsatisfactory because of the large size of K+ and irreversible interfacial reaction. Here, a developed 3D foam-like MXene scaffold (3D-FMS) is constructed via an electrostatic neutralization of Ti3C2Tx with positive-charged melamine followed with calcination, which offers massive surface-active sites and facilitates fast K+ transfer for boosting the potassium-ion storage capacity and dynamics. In addition, using KFSI-based electrolyte, the formation of a robust solid electrolyte interface layer with more inorganic components on MXene anode is revealed for enhancing the Coulombic efficiency. Consequently, the 3D-FMS with KFSI-based electrolyte delivers enhanced potassium-ion storage performance in terms of capacity (161.4 mAh g-1 at 30 mA g-1), rate capability (70 mAh g-1 at 2 A g-1), and cycling stability (80.5 mAh g-1 at 1 A g-1 after 2000 cycles). Moreover, the assembled 3D-FMS//activated carbon potassium-ion hybrid supercapacitor delivers a high energy density of 57 Wh kg-1 at a power density of 290 W kg-1. These excellent performances demonstrate the great superiority of 3D-FMS in KFSI-based electrolyte and may accelerate the development of MXene-based materials for potassium storage systems.

Keywords

3D foam-like scaffold / electrolyte chemistry / electrostatic neutralization / MXene / potassium-ion batteries

Cite this article

Download citation ▾
Peng Zhang, Yanmeng Peng, Qizhen Zhu, Razium Ali Soomro, Ning Sun, Bin Xu. 3D Foam-Based MXene Architectures: Structural and Electrolytic Engineering for Advanced Potassium-Ion Storage. Energy & Environmental Materials, 2024, 7(4): e12379 DOI:10.1002/eem2.12379

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.

[2]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[3]

J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[4]

D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431.

[5]

C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 2020, 370, 708.

[6]

F. Liu, Y. Liu, X. Zhao, X. Liu, L.-Z. Fan, J. Mater. Chem. A 2019, 7, 16712.

[7]

N. Sun, Q. Zhu, B. Anasori, P. Zhang, H. Liu, Y. Gogotsi, B. Xu, Adv. Funct. Mater. 2019, 29, 1906282.

[8]

N. Jayaprakash, S. K. Das, L. A. Archer, Chem. Commun. 2011, 47, 12610.

[9]

A. L. Lipson, B. Pan, S. H. Lapidus, C. Liao, J. T. Vaughey, B. J. Ingram, Chem. Mater. 2015, 27, 8442.

[10]

L. Liu, Z. Lin, J.-Y. Chane-Ching, H. Shao, P.-L. Taberna, P. Simon, Energy Storage Mater. 2019, 19, 306.

[11]

B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng, Y. Li, H. Du, B. Xu, Adv. Funct. Mater. 2021, 31, 2102126.

[12]

H. Liu, H. Du, W. Zhao, X. Qiang, B. Zheng, Y. Li, B. Cao, Energy Storage Mater. 2021, 40, 490.

[13]

Q. Zhang, J. Mao, W. K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu, Z. Guo, Adv. Energy Mater. 2018, 8, 1703288.

[14]

A. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2016, 2, 1600255.

[15]

P. Zhang, D. Wang, Q. Zhu, N. Sun, F. Fu, B. Xu, Nano-Micro Lett. 2019, 11, 81.

[16]

A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.

[17]

B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.

[18]

Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, B. Xu, Adv. Mater. 2021, 33, 2103148.

[19]

M.-Q. Zhao, X. Xie, C. E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Adv. Mater. 2017, 29, 1702410.

[20]

Q. Zhao, Q. Zhu, J. Miao, P. Zhang, P. Wan, L. He, B. Xu, Small 2019, 15, 1904293.

[21]

P. Zhang, R. A. Soomro, Z. Guan, N. Sun, B. Xu, Energy Storage Mater. 2020, 29, 163.

[22]

Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Adv. Funct. Mater. 2021, 31, 2100457.

[23]

Q. Zhao, Q. Zhu, J. Miao, P. Zhang, B. Xu, Nanoscale 2019, 11, 8442.

[24]

X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu, J. Luo, Angew. Chem. Int. Ed. 2018, 57, 15028.

[25]

D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Adv. Mater. 2019, 31, 1901820.

[26]

Y. Xia, T. S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409.

[27]

M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.

[28]

Q. Zhu, J. Li, P. Simon, B. Xu, Energy Storage Mater. 2021, 35, 630.

[29]

R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng, L. Zheng, L. Zhang, Z. Chen, G. Liu, B. Chen, Y. Mi, J. Yang, Adv. Energy Mater. 2018, 8, 1801514.

[30]

Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, R. Liu, G. Yuan, Adv. Funct. Mater. 2019, 29, 1900326.

[31]

T. Shang, Z. Lin, C. Qi, X. Liu, P. Li, Y. Tao, Z. Wu, D. Li, P. Simon, Q.-H. Yang, Adv. Funct. Mater. 2019, 29, 1903960.

[32]

M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X. Wang, Chem. Commun. 2015, 51, 13531.

[33]

Y. Z. Zhang, J. K El-Demellawi, Q. Jiang, G. Ge, H. Liang, K. Lee, X. Dong, H. N. Alshareef, Chem. Soc. Rev. 2020, 49, 7229.

[34]

Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo, J. Liang, D. Han, R. Lyu, C. Qi, W. Lv, F. Kang, Q.-H. Yang, Adv. Mater. 2019, 31, 1902432.

[35]

M. Naguib, R. A. Adams, Y. Zhao, D. Zemlyanov, A. Varma, J. Nanda, V. G. Pol, Chem. Commun. 2017, 53, 6883.

[36]

P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, S. Wang, C. Sun, J. Qin, X. Shi, X. Bao, Nano Energy 2017, 40, 1.

[37]

W. Zhang, W. K. Pang, V. Sencadas, Z. Guo, Joule 2018, 2, 1534.

[38]

L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Angew. Chem. Int. Ed. 2019, 58, 10500.

[39]

S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 2015, 60, 172.

[40]

C. Vaalma, G. A. Giffin, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2016, 163, 1295.

[41]

J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 2017, 27, 1701264.

[42]

X. Xie, K. Kretschmer, B. Anasori, B. Sun, G. Wang, Y. Gogotsi, ACS Appl. Nano Mater. 2018, 1, 505.

[43]

Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan, H. Kang, B. Su, Z. Cheng, Y. Liu, Adv. Sci. 2018, 5, 1800750.

[44]

M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, M. W. Barsoum, Chem. Commun. 2014, 50, 7420.

[45]

B. Ahmed, D. H. Anjum, M. N. Hedhili, Y. Gogotsi, H. N. Alshareef, Nanoscale 2016, 8, 7580.

[46]

J. Li, D. Yan, S. Hou, Y. Li, T. Lu, Y. Yao, L. Pan, J. Mater. Chem. A 2018, 6, 1234.

[47]

P. Zhang, Q. Zhu, R. A. Soomro, S. He, N. Sun, N. Qiao, B. Xu, Adv. Funct. Mater. 2020, 30, 2000922.

[48]

L. Fan, S. Chen, R. Ma, J. Wang, L. Wang, Q. Zhang, E. Zhang, Z. Liu, B. Lu, Small 2018, 14, 1801806.

[49]

N. Xiao, W. D. McCulloch, Y. Wu, J. Am. Chem. Soc. 2017, 139, 9475.

[50]

F. Yang, J. Hao, J. Long, S. Liu, T. Zheng, W. Lie, J. Chen, Z. Guo, Adv. Energy Mater. 2021, 11, 2003346.

[51]

H. Wang, D. Yu, X. Wang, Z. Niu, M. Chen, L. Cheng, W. Zhou, L. Guo, Angew. Chem. Int. Ed. 2019, 58, 16451.

[52]

Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem. Int. Ed. 2018, 130, 3718.

[53]

X. Guo, J. Zhang, J. Song, W. Wu, H. Liu, G. Wang, Energy Storage Mater. 2018, 14, 306.

[54]

H. He, D. Huang, Y. Tang, Q. Wang, X. Ji, H. Wang, Z. Guo, Nano Energy 2019, 57, 728.

[55]

X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan, Z. Wen, Adv. Energy Mater. 2019, 9, 1901533.

[56]

F.-Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. Wang, D. Cao, Adv. Funct. Mater. 2020, 30, 2005663.

[57]

L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, Adv. Mater. 2018, 30, 1800804.

[58]

S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang, S. Wan, F. He, P. Munroe, P. H. L. Notten, G. Wang, Small 2020, 16, 1906131.

[59]

L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu, X. Liu, Y. Wu, W. Huang, Electrochim. Acta 2017, 232, 106.

[60]

S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji, X. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 15542.

[61]

A. L. Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, J. Power Sources 2017, 363, 34.

[62]

P. Zhang, Q. Zhu, Z. Guan, Q. Zhao, N. Sun, B. Xu, ChemSusChem 2020, 13, 1621.

RIGHTS & PERMISSIONS

2022 Zhengzhou University.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/