Indonesia has the third largest extent of tropical forest in the world and has been extensively involved in Reducing Emissions from Deforestation and forest Degradation (REDD+). Despite significant commitments from the Government of Indonesia (GOI) and the international community, the deforestation rate in Indonesia has not stabilized or decreased in the initial years after REDD+’s introduction in 2007, and as of 2012 was arguably the highest in the world. Globally, it is essential to understand how REDD+ is going to affect the deforestation rate as it is implemented in many countries. In order to constructively evaluate these continued increases in rates of deforestation in Indonesia, this article will explore some of the challenges of forest governance in Indonesia as identified by stakeholders of REDD+ and as described in the policy documents and other literature. Despite a number of changes in laws and regulations that came about as a result of REDD+ in Indonesia, weak institutional capacity and corruption have resulted in a situation that might be described as essentially, business as usual. Furthermore, new policies that have resulted from the introduction of REDD+ designed to help forest governance, such as the presidential moratorium on new licenses for forest use, may in fact have motivated some parties to initially act in ways that have contributed to the increase in deforestation—particularly through leakage from institutionally recognized forests to non-institutionally recognized forest areas. Problematic governance and corruption continue to pose problems that haunt the forestry sector and allow encroachment onto protected areas.
The international crude oil market plays a crucial role in economies, and the studies of the correlation, risk and synchronization of the international crude oil market have important implications for the security and stability of the country, avoidance of business risk and people’s daily lives. We investigate the information and characteristics of the international crude oil market (1999–2015) based on the random matrix theory (RMT). Firstly, we identify richer information in the largest eigenvalues deviating from RMT predictions for the international crude oil market; the international crude oil market can be roughly divided into ten different periods by the methods of eigenvectors and characteristic combination, and the implied market information of the correlation coefficient matrix is advanced. Secondly, we study the characteristics of the international crude oil market by the methods of system risk entropy, dynamic synchronous ratio, dynamic non-synchronous ratio and dynamic clustering algorithm. The results show that the international crude oil market is full of risk. The synchronization of the international crude oil market is very strong, and WTI and Brent occupy a very important position in the international crude oil market.
Global warming and climate change are the most prominent issues of the current environmental scenario. These problems arise due to higher concentration of greenhouse gases in the atmosphere which exert a warming effect. Although much attention has been given to anthropogenic sources and impacts of these gases, the significance and implications of microorganisms have remained neglected. The present review brings to light this overlooked aspect (role and responses of microbes in this context) in both terrestrial and aquatic ecosystems. Through existing literature, it attempts to assess the mechanisms that cause microbes to emit and absorb greenhouse gases. The consequent effects as well as feedbacks have also been studied. It was then found that microbes play a major role with respect to climate change. Thus, microbes should never be deprived of their due importance in climate change models as well as discussions on the matter. In addition, the review also identified the necessity of proper research in this aspect as there is a lack of adequate understanding on this facet of climate change.
The Barapukuria 2 × 125 MW Coal Fired Thermal Power Plant generates significant quantities of solid by-products which are conventionally known as fly ash. These quantities are about 0.08 million metric tons per year which is currently disposing into two designated ash ponds as a waste material. Nowadays, this ash disposal process with its safe management becomes environmental important issues and major challenges to the industry, environmentalists, scientists and so on. As a consequence, this study principally deals with the assessment of different properties and uses of coal ash for safe environment around the plant area. Thus, the prime objectives of this research are to evaluate the physical, chemical and engineering properties of coal ash for its classification, suitable options of utilizations and safe environment under direct field investigation and laboratory analysis. The results of various analysis implied that physically the color of ash is light gray but varies from gray to dark gray, where the sizes of the particles are in the ranges from <0.075 to 0.16 mm in diameter; accordingly, this ash can be classified as fine sand/silt to clay. The analyzed major and minor chemical properties of coal ash indicate good quality ash. In addition, the major compositions suggest the similar quality while the concentration of SiO2 (50.61 %), Al2O3 (38.55 %) and Fe2O3 (3.68 %) are about 90 %. The intensity level of major and minor components of this ash is SiO2 > Al2O3 > TiO2 > Fe2O3 > CaO > P2O5 > MgO > K2O > SO3 > Mn3O4 > Na2O and Mn > Zn > As > Cu > Cr > Pb > Co > Cd, respectively. In the case of engineering properties, grain size, hydraulic conductivity, consistency, compaction, compressive strength and shear strength aspects are presented. The results replicate that effect of addition of coal ash with sand and cement can improve the quality of mixtures specifically increasing the consistency, compressive strength, shear strength and bearing capacity, whereas reducing the hydraulic conductivity of concrete or soil. At the end, a concise discussion has been drawn on the prospective utilizations and management of this ash for present and future environmental sustainability around the area.
Agro-pastoral operations have the potential to threaten public health with loading of diverse pathogens into surface waters through overland flow; increasing awareness of the limitations of fecal indicators has led to development of a number of advancements in detection, source tracking and predictive modeling of public health risk. These tools and techniques are beginning to be integrated into management strategies. The objective of this review was to determine the status of current knowledge and challenges of the fate and transport of Escherichia coli in overland flow and their interaction within vegetative filter strip (VFS) as one of these implemented best management practices and to critically evaluate its use in that setting as an indicator organism. With few studies directly focusing on VFS removal of E. coli from overland flow, we critically evaluated the available data on movement of E. coli from fecal source loading to retention and decay or re-release for potential contamination of water ways and pointed out potential limitations in both pathogen-specific removal and its use as an indicator organisms within overland flow and VFS. Critical areas of focus for future studies to reduce gaps in knowledge were identified, and the integration of newer approaches in source tracking, alternative indicators and the use of non-pathogenic surrogates for field testing of existing VFS models was encouraged. With VFS as a growing field of interest as an economical conservation practice and as an avenue for conservation of resources for small-scale agro-pastoral operations, management strategies to reduce initial fecal load from either applied manure constituents or shedding from free-range animals will continue to test the limits in the applications of models to overland flow and VFS management strategies. Further studies at the microscale in understanding discrepancies between low and high pathogenicity strains of E. coli and between E. coli and other fecal pathogens in the context of VFS will be critical. However, nuanced studies are needed to understand either biological or environmental differences in the fate and transport of the diverse types of fecal pathogens within these settings