Carbon source or sink? Assessment of the most important green infrastructure of the City of Vienna in Austria – the Danube Island

Magdalena von der Thannen , Eric Smit , Anja Klisch , Hans Peter Rauch

Energy, Ecology and Environment ›› 2025, Vol. 10 ›› Issue (5) : 592 -606.

PDF
Energy, Ecology and Environment ›› 2025, Vol. 10 ›› Issue (5) : 592 -606. DOI: 10.1007/s40974-025-00367-7
Original Article
research-article

Carbon source or sink? Assessment of the most important green infrastructure of the City of Vienna in Austria – the Danube Island

Author information +
History +
PDF

Abstract

The increasing effects of climate change on urban areas are driving interest in green and blue infrastructure (GBI) as climate mitigation measures. Vegetation as part of GBI plays a key role in urban heat island reduction strategies through multiple ecological and physical processes. However, carbon sequestration capabilities of vegetation as part of GBI are poorly studied. The understanding of the carbon balance of GBI is crucial to holistically assess their potential in sustainably enhancing urban climatic conditions and mitigating climate change effects. In Vienna, the artificial Danube Island is the most important GBI and recreational area in the city. This study aims to provide a holistic carbon balance of its use phase and examines the climate potential of the Island’s vegetation. To achieve this, field and remote sensing data were integrated to calculate the biomass and carbon stock. The total biomass was found to be approximately 40,840 t. Assuming the carbon content is half of the vegetation biomass dry weight, the Danube Island stores 20,420 t of carbon, equivalent to about 74,940 t of CO2​. On the other side of the carbon balance, the study analysed the annual environmental burden of maintenance activities. Using the LCA method and considering the Global Warming Potential (GWP) impact category, the environmental burden was calculated with the Ecoinvent and Swiss non-road databases. Results indicate that maintaining the green infrastructure on Danube Island generates 353 t of CO2-equivalent emissions annually. On the other hand, the Danube Island has the potential to absorb 2,272 t of CO2 per year through its trees and shrubs. On balance, this places the Danube Island squarely on the side of being a carbon sink. This study innovatively combines biomass quantification with LCA to provide a comprehensive carbon balance of urban green infrastructure. The findings underscore the importance of considering both carbon sequestration and maintenance-related emissions in urban climate adaptation strategies.

Keywords

Biomass quantification / Carbon balance / Green and blue infrastructure / LCA, remote sensing

Cite this article

Download citation ▾
Magdalena von der Thannen, Eric Smit, Anja Klisch, Hans Peter Rauch. Carbon source or sink? Assessment of the most important green infrastructure of the City of Vienna in Austria – the Danube Island. Energy, Ecology and Environment, 2025, 10(5): 592-606 DOI:10.1007/s40974-025-00367-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amoatey P, Sulaiman H, Kwarteng A, Al-Reasi HA (2018) Above-ground carbon dynamics in different arid urban green spaces. Environ Earth Sci 77(12). https://doi.org/10.1007/s12665-018-7613-1

[2]

BAFU (2022) Non Road Database. https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/non-road-datenbank.html

[3]

BernalB, MurrayLT, PearsonTRH. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag, 2018, 13122.

[4]

BodnarukEW, KrollCN, YangY, HirabayashiS, NowakDJ, EndrenyTA. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc Urban Plann, 2017, 157: 457-467. D. J.]

[5]

BolundP, HunhammarS. Ecosystem services in urban areas. Ecol Econ, 1999, 29(2): 293-301.

[6]

Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environmental Pollution (Barking, Essex: 1987), 116 Suppl 1, S195-200. https://doi.org/10.1016/S0269-7491(01)00251-2

[7]

BrundrettMC. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil, 2009, 320: 37-77.

[8]

BunceRGH. Biomass and production of trees in a mixed deciduous woodland: I. Girth and height as parameters for the Estimation of tree dry weight. J Ecol, 1968, 563759.

[9]

CostanzaR, d’ArgeR, de GrootR, FarberS, GrassoM, HannonB, LimburgK, NaeemS, O’NeillRV, ParueloJ, RaskinRG, SuttonP, van den BeltM. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260.

[10]

EscobedoFJ, KroegerT, WagnerJE. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollution (Barking Essex: 1987), 2011, 159(8–9): 2078-2087.

[11]

GabouryS, BoucherJ–F, VilleneuveC, LordD, GagnonR. Estimating the net carbon balance of boreal open woodland afforestation: A case-study in québec’s closed-crown boreal forest. For Ecol Manag, 2009, 257(2): 483-494.

[12]

GillS, HandleyJ, EnnosA, PauleitS. Adapting cities for climate change: the role of the green infrastructure. Built Environ, 2007, 33(1): 115-133.

[13]

Green Delta GmbH (2020) openLCA, 1.10.3 ed.

[14]

Grimm-Pretner D, Krippner U (2016) Vienna and the Danube Island: Shifting Objectives for an Urban Greenway. Proceedings of the Fábos Conference on Landscape and Greenway Planning (5), Article 36, 149–156. https://scholarworks.umass.edu/fabos/vol5/iss1/36/

[15]

Hochbichler E (2002) Vorläufige Ergebnisse von Biomasseninventuren in Buchen-und Mittelwaldbeständen. In H.-P. Dietrich, S. Raspe, and T. Preuhsler (Ed.), Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen (pp. 37–46). https://www.academia.edu/52967670/Inventur_von_Biomasse_und_N%C3%A4hrstoffvorr%C3%A4ten_in_Waldbest%C3%A4nden

[16]

IPCC (2006) IPCC guidelines for National greenhouse gas inventories: intergovernmental panel on climate change. The Institute for Global Environmental Strategies

[17]

IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

[18]

IPCC (2022) Summary for policymakers. (Ed.), Global warming of 1.5°C: an IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, pp 1–24. https://doi.org/10.1017/9781009157940.001V. Masson-Delmotte

[19]

JanssonJK, HofmockelKS. Soil microbiomes and climate change. Nat Rev Microbiol, 2020, 18: 35-46.

[20]

JenkinsJC, ChojnackyDC, HeathLS, BirdseyRA. National-Scale biomass estimators for united States tree species. For Sci, 2003, 49(1): 12-35

[21]

Krippner U, Grimm-Pretner D (2020) Shaping an urban riverscape the planning and design of Danube Island and the new Danube in vienna, 1969–1988. In: Rovná K (ed) Plants in urban areas and landscape:: PUAL. Plants in urban areas and landscape:: PUAL 2020. Slovak University of Agriculture in Nitra, pp 28–34. https://doi.org/10.15414/pual%2F2020.28-34

[22]

LalR. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627.

[23]

LindenbergerA, RauchHP, KasakK, StelzhammerM, von der ThannenM. Impact of various flood conditions on the CO2 ecosystem exchange as a component of floodplain grassland restoration. Ecol Eng, 2024, 212(107489): 0925-8574.

[24]

LWF (2011) Kohlenstoffspeicherung von Bäumen: Merkblatt 27. https://www.lwf.bayern.de/mam/cms04/service/dateien/mb-27-kohlenstoffspeicherung-2.pdf

[25]

MA 45 (2020) Projekt LIFE DICCA - Gutes Klima für die Donauinsel. https://www.wien.gv.at/umwelt/gewaesser/donauinsel/dicca/

[26]

MA 18 (Ed.) (2015) Werkstattbericht: vol. 144. Fachkonzept Grün- und freiraum: gemeinsam Draussen. Magistratsabteilung 18 - Stadtentwicklung und Stadtplanung

[27]

Maiti R, Rodriguez H, Kumari CA (2015) Trees and shrubs with high carbon fixation/concentration. For Re, 1–3

[28]

NabuursG, SchelhaasM. Carbon profiles of typical forest types across Europe assessed with CO2FIX. Ecol Ind, 2002, 1(3): 213-223.

[29]

NiceseFP, ColangeloG, ComolliR, AzziniL, LucchettiS, MarzilianoPA, SanesiG. Estimating CO2 balance through the life cycle assessment prism: A case – Study in an urban park. Urban Forestry Urban Greening, 2021, 57126869.

[30]

NowakDJ, CraneDE. Carbon storage and sequestration by urban trees in the USA. Environ Pollution (Barking Essex: 1987), 2002, 116(3): 381-389.

[31]

Paladinić E, Vuletić D, Martinić I, Marjanović H, Indir K, Benko M, Novotny V (2009) Forest biomass and sequestered carbon Estimation according to main tree components on the forest stand scale. Periodicum Biologorum (111), 459–466

[32]

PoorterL, BongersF, AideTM, Almeyda ZambranoAM, BalvaneraP, BecknellJM, BoukiliV, BrancalionPHS, BroadbentEN, ChazdonRL, CravenD, de Almeida-CortezJS, CabralGAL, de JongBHJ, DenslowJS, DentDH, DeWaltSJ, DupuyJM, DuránSM, RozendaalDMA. Biomass resilience of Neotropical secondary forests. Nature, 2016, 530(7589): 211-214.

[33]

Przestrzelska K, Wartalska K, Rosińska W, Jurasz J, Kaźmierczak B (2024) Climate resilient cities: A review of Blue-Green solutions worldwide. Water Resour Manage 38:5885–5910. https://doi.org/10.1007/s11269-024-03950-5

[34]

Redl L, Wösendorfer H (1980) Die donauinsel: E. Beispiel polit. Planung in Wien. Österreichische texte Zur gesellschaftskritik: bd. 3. Verlag für Gesellschaftskritik

[35]

ScholzT, HofA, SchmittT. Cooling effects and regulating ecosystem services provided by urban trees—Novel analysis approaches using urban tree cadastre data. Sustainability, 2018, 103712.

[36]

Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, New York. 787 p. ISBN 978-0-12–370526–6

[37]

SpeakA, EscobedoFJ, RussoA, ZerbeS. Total urban tree carbon storage and waste management emissions estimated using a combination of lidar, field measurements and an end-of-life wood approach. J Clean Prod, 2020, 256120420.

[38]

Stadt Wien, ROHRHOFER ZT GmbH (2019) – MA 45, &. EULIFE DICCA: Climate Change Adaptation of the Ecosystem Danube Island. Maßnahme A.1: Detailbewertung der Klimaresistenz/-resilienz von Ökosystemen auf der Donauinsel

[39]

Stadt Wien–MA 45Donauhochwasserschutz wien: flood control on the Danube, 2017, Vienna. Flood Control on the Danube, Vienna.

[40]

StrohbachMW, ArnoldE, HaaseD. The carbon footprint of urban green space—A life cycle approach. Landsc Urban Plann, 2012, 104(2): 220-229.

[41]

TabacchiG, Di CosmoL, GaspariniP. Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J for Res, 2011, 130(6): 911-934.

[42]

Ter-MikaelianMT, KorzukhinMD. Biomass equations for sixty-five North American tree species. For Ecol Manag, 1997, 97(1): 1-24.

[43]

TianP, ZhongH, ChenX, FengK, SunL, ZhangN, ShaoX, LiuY, HubacekK. Keeping the global consumption within the planetary boundaries. Nature, 2024, 635: 625-630.

[44]

von der ThannenM, HoerbingerS, ParatschaR, SmutnyR, LampalzerT, StraussA, RauchHP. Development of an environmental life cycle assessment model for soil bioengineering constructions. Eur J Environ Civil Eng, 2017, 24(2): 141-155.

[45]

von der ThannenM, HoerbingerS, MuellebnerC, BiberH, RauchHP. Case study of a water bioengineering construction site in austria. Ecological aspects and application of an environmental life cycle assessment model. Int J Energy Environ Eng, 2021, 12: 599-609.

[46]

WernetG, BauerC, SteubingB, ReinhardJ, Moreno-RuizE, WeidemaB. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess, 2016, 21(9): 1218-1230.

[47]

Zentrum für Umweltgeschichte (2019) Wasser Stadt Wien. Eine Umweltgeschichte.

[48]

Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva fennica. Monographs: vol. 4. The Finnish Society of Forest Science; The Finnish Forest Research Institute. https://doi.org/10.14214/sf.sfm4

Funding

University of Natural Resources and Life Sciences Vienna (BOKU)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/