Life cycle assessment of Nicotiana tabacum L.: sustainability of seedling alternatives

Yasmani Alba-Reyes , Yesther Sánchez-Valle , Rocío Gretchen Ramos-Aquino , Ernesto L. Barrera , Janet Jiménez

Energy, Ecology and Environment ›› : 1 -15.

PDF
Energy, Ecology and Environment ›› : 1 -15. DOI: 10.1007/s40974-024-00334-8
Original Article

Life cycle assessment of Nicotiana tabacum L.: sustainability of seedling alternatives

Author information +
History +
PDF

Abstract

Tray-based technology excels in N. tabacum seedling production’s environmental performance.

Energy consumption emerges as a pivotal factor influencing environmental impacts.

Alternatives integrating renewables and optimized soil tillage offer substantial benefits.

Keywords

Nicotiana tabacum L. / Seedling / Life cycle assessment / Sustainability

Cite this article

Download citation ▾
Yasmani Alba-Reyes, Yesther Sánchez-Valle, Rocío Gretchen Ramos-Aquino, Ernesto L. Barrera, Janet Jiménez. Life cycle assessment of Nicotiana tabacum L.: sustainability of seedling alternatives. Energy, Ecology and Environment 1-15 DOI:10.1007/s40974-024-00334-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adil M, Zhang S, Wang J, Shah AN, Tanveer M, Fiaz S. Effects of fallow management practices on soil water, crop yield and water use efficiency in winter wheat monoculture system: a Meta-analysis. Front Plant Sci, 2022, 13: 825309

[2]

Aghili Nategh N, Banaeian N, Gholamshahi A, Nosrati M. Optimization of energy, economic, and environmental indices in sunflower cultivation: a comparative analysis. Environ Prog Sustain Energy, 2021, 40 2 e13505

[3]

Ahmed J, Almeida E, Aminetzah D, Denis N, Henderson K, Katz J, Kitchel H, Mannion P (2020) Agriculture and climate change: Reducing emissions through improved farming practices

[4]

Aldentun Y. Life cycle inventory of forest seedling production—from seed to regeneration site. J Clean Prod, 2002, 10: 47- 55

[5]

Ali MY, Shahrier M, Kafy A-A, Ara I, Javed A, Fattah MA, Rahaman ZA, Tripura K (2023) Environmental impact assessment of tobacco farming in northern Bangladesh. Heliyon 9(3). https://doi.org/10.1016/j.heliyon.2023.e14505

[6]

Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020, 11 1 5427

[7]

Atlasbig (2023) World Tobacco Production by Country. Retrieved May, 16th from https://www.atlasbig.com/en-us/countries-tobacco-production

[8]

Benham BL, Vaughan DH, Laird MK, Ross BB, Peek DR. Surface water quality impacts of conservation tillage practices on burley tobacco production systems in southwest Virginia. Water Air Soil Pollut, 2007, 179: 159- 166

[9]

Boettcher R, Zappe AL, de Oliveira PF, Machado ÊL, de Lawisch-Rodriguez A, Rodriguez-Lopez A. Carbon Footprint of agricultural production and processing of tobacco (Nicotiana tabacum) in southern Brazil. Environ Technol Innov, 2020, 18: 100625

[10]

Boretti A. Advantages and disadvantages of diesel single and dual-fuel engines. Front Mech Eng, 2019, 5: 64

[11]

Cambria D, Pierangeli D. A life cycle assessment case study for walnut tree (Juglans regia L.) seedlings production. Int J Life Cycle Assess, 2011, 16: 859- 868

[12]

Carsel RF, Nixon WB, Ballantlne LG. Comparison of pesticide root zone model predictions with observed concentrations for the tobacco pesticide metalaxyl in unsaturated zone soils. Environ Toxicol Chem, 1986, 5 4 345- 353

[13]

Chugh A, Arora M, Jain N, Vidyasagaran A, Readshaw A, Sheikh A, Eckhardt J, Siddiqi K, Chopra M, Mishu MP. The global impact of tobacco control policies on smokeless tobacco use: a systematic review. Lancet Glob Health, 2023, 11 6 e953- e968

[14]

Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of Food and Agriculture

[15]

Elhami B, Raini MGN, Taki M, Marzban A, Heidarisoltanabadi M. Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: central parts of Iran). Renew Energy, 2021, 178: 875- 890

[16]

Escandell-Westcott A, Riera R, Hernández-Muñoz N (2023) Posidonia oceanica restoration review: factors affecting seedlings. J Sea Res 102337. https://doi.org/10.1016/j.seares.2023.102337

[17]

Espino E, Uriarte B, Cordero P, Rodríguez N, Izquierdo A, Blanco L, Hernández J, Quintana G, Benítez O, Ibizate J, Hernández M (2012) Instructivo técnico para El Cultivo Del tabaco en Cuba. Instituto de Investigaciones del Tabaco

[18]

Fan J, Liu C, Xie J, Han L, Zhang C, Guo D, Niu J, Jin H, McConkey BG. Life cycle assessment on agricultural production: a mini review on methodology, application, and challenges. IJERPH, 2022, 19 16 9817

[19]

Fanelli RM. The spatial and temporal variability of the effects of agricultural practices on the environment. Environments, 2020, 7 4 33

[20]

García Rubido M, Ponce de León D, Acosta Aguiar Y, Cruz Hernandez Y. Influences of Canavalia ensiformis inoculated with AMF on some morphological variables and yield of dark tobacco cultivated to the sun. Cultivos Tropicales, 2017, 38 2 22- 27

[21]

Gołasa P, Wysokiński M, Bieńkowska-Gołasa W, Gradziuk P, Golonko M, Gradziuk B, Siedlecka A, Gromada A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies, 2021, 14 13 3784

[22]

Halimah M, Zulkifli H, Vijaya S, Tan Y, Wei P, Let C, May C. Life cycle assessment of oil palm seedling production (part 1). JOPR, 2010, 22 December 878- 886

[23]

Huijbregts MA, Steinmann ZJ, Elshout PM, Stam G, Verones F, Vieira M, Zijp M, Hollander A, Van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess, 2017, 22: 138- 147

[24]

Hussain M, Zaidi SMH, Malik RN, Sharma BD. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan. Environ Res, 2014, 134: 81- 90

[25]

Hussain M, Malik RN, Taylor A, Puettmann M. Hazardous pollutants emissions and environmental impacts from fuelwood burned and synthetic fertilizers applied by tobacco growers in Pakistan. Environ Technol Innov, 2017, 7: 169- 181

[26]

Ilahi S, Wu Y, Raza MAA, Wei W, Imran M, Bayasgalankhuu L. Optimization approach for improving energy efficiency and evaluation of greenhouse gas emission of wheat crop using data envelopment analysis. Sustainability, 2019, 11 12 3409

[27]

IPCC (2019) IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

[28]

ISO:14040 (2006) Environmental management-lyfe cycle assessment-principles and framework. International standard, p 28

[29]

ISO:14044 Environmental management-lyfe cycle assessment-requirements and guidelines, 2006 London British standard 58

[30]

Jankowski KJ, Sokólski M, Załuski D. Winter oilseed rape: agronomic management in different tillage systems and energy balance. Energy, 2023, 277: 127590

[31]

Kazlauskas M, Bručienė I, Savickas D, Naujokienė V, Buragienė S, Steponavičius D, Romaneckas K, Šarauskis E. Life Cycle Assessment of Winter Wheat Production using Precision and Conventional Seeding technologies. Sustainability, 2023, 15: 14376

[32]

Leal M, Moreno MA, Albornoz PL, Mercado MI, Zampini IC, Isla MI. Nicotiana tabacum leaf waste: morphological characterization and chemical-functional analysis of extracts obtained from powder leaves by using green solvents. Molecules, 2023, 28 3 1396

[33]

Li Z, Zhang Q, Li Z, Qiao Y, Du K, Yue Z, Tian C, Leng P, Cheng H, Chen G. Different responses of agroecosystem greenhouse gas emissions to tillage practices in a Chinese wheat–maize cropping system. Carbon Res, 2023, 2 1 7

[34]

Liu W, Ji X, Cao H, Huo C, He L, Peng X, Yang Y, Yang F, Xiong S. Comparative transcriptome analysis reveals the effect of miR156a overexpression on Mineral Nutrient Homeostasis in Nicotiana tabacum. Plants, 2023, 12 9 1739

[35]

Martínez-Blanco J, Lazcano C, Christensen TH, Muñoz P, Rieradevall J, Møller J, Antón A, Boldrin A. Compost benefits for agriculture evaluated by life cycle assessment. Rev ASD, 2013, 33: 721- 732

[36]

Medel-Jiménez F, Krexner T, Gronauer A, Kral I. Life cycle assessment of four different precision agriculture technologies and comparison with a conventional scheme. J Clean Prod on, 2024, 434: 140198

[37]

Mencet Yelboğa MN. LCA analysis of grafted tomato seedling production in Turkey. Sustainability, 2019, 12 1 25

[38]

Mirkarimi SR, Ardakani Z, Rostamian R. Economic and environmental assessment of tobacco production in Northern Iran. Ind Crops Prod, 2021, 161: 113171

[39]

Mishra A, Das SK, Reddy KR (2023) Life cycle assessment of processing alternate sands for sustainable construction: coal mine overburden sand versus manufactured sand. J Build Eng 107042. https://doi.org/10.1016/j.jobe.2023.107042

[40]

Mollenhauer K, Tschöke H, Johnson KG (2010) Handbook of diesel engines, vol 1. Springer Berlin

[41]

Mondello G, Salomone R, Saija G, Lanuzza F, Gulotta TM. Life Cycle Assessment and Life Cycle costing for assessing maritime transport: a comprehensive literature review. Marit Policy Manag, 2023, 50 2 198- 218

[42]

Muhamad H, Sahid IB, Surif S, Ai TY, May CY. A gate-to-gate case study of the life cycle assessment of an oil palm seedling. Trop Life Sci Res, 2012, 23 1 15

[43]

Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau K-w. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J Clean Prod, 2017, 162: 571- 586

[44]

Naranjo GP-S, Bolonio D, Ortega MF, García-Martínez M-J. Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. J Clean Prod, 2021, 291: 125883

[45]

ONEI (2022) Anuario estadístico de Cuba 2021. Minería y energía. ONEI. http://www.onei.gob.cu/sites/default/files/10_mineria y energía_1.pdf.

[46]

Perrin A, Basset-Mens C, Gabrielle B. Life cycle assessment of vegetable products: a review focusing on cropping systems diversity and the estimation of field emissions. Int J Life Cycle Assess, 2014, 19: 1247- 1263

[47]

Pishgar-Komleh SH, Akram A, Keyhani A, Sefeedpari P, Shine P, Brandao M. Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. Int J Life Cycle Assess, 2020, 25: 620- 632

[48]

Rathour RK, Behl M, Dhashmana K, Sakhuja D, Ghai H, Sharma N, Meena KR, Bhatt AK, Bhatia RK. Non-food crops derived lignocellulose biorefinery for sustainable production of biomaterials, biochemicals and bioenergy: a review on trends and techniques. Ind Crops Prod, 2023, 204: 117220

[49]

Reichert JM, Pellegrini A, Rodrigues MF. Tobacco growth, yield and quality affected by soil constraints on steeplands. Ind Crops Prod, 2019, 128: 512- 526

[50]

Riikonen J, Luoranen J. Seedling production and the field performance of seedlings. Forests, 2018, 9 12 740

[51]

Rodríguez YE, O, Renedo VSG, Serrano LRP. Balance energético de tres tecnologías de labranza en un Vertisol para El cultivo del tabaco (Nicotiana tabacum L). Revista Ingeniería Agrícola, 2014, 4 2 35- 40

[52]

Taghavifar H, Mardani A. Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial neural network. J Clean Prod, 2015, 87: 159- 167

[53]

Tesfaye K, Takele R, Sapkota TB, Khatri-Chhetri A, Solomon D, Stirling C, Albanito F. Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale. Sci Total Environ, 2021, 782: 146696

[54]

Turconi R, Boldrin A, Astrup T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew Sust Energ Rev, 2013, 28: 555- 565

[55]

van der Werf HM, Knudsen MT, Cederberg C. Towards better representation of organic agriculture in life cycle assessment. Nat Sustain, 2020, 3 6 419- 425

[56]

Van Groenigen KJ, Van Kessel C, Hungate BA. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat Clim Change, 2013, 3 3 288- 291

[57]

Vázquez-Rowe I, Reyna JL, García-Torres S, Kahhat R. Is climate change-centrism an optimal policy making strategy to set national electricity mixes?. Appl Energy, 2015, 159: 108- 116

[58]

Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess, 2016, 21 9 1218- 1230

[59]

WHO (2022) WHO Director-General’s opening remarks at the COVID-19 media briefing– 1 June 2022. WHO. Retrieved December, 13th from https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-covid-19-media-briefing--1-june-2022

[60]

Yang P, Drohan PJ, Long H, Yang M, Bian Y, Ma E. Water use efficiency, yield and quality of tobacco (Nicotiana tabacum L.) using negative pressure irrigation. Ind Crops Prod, 2022, 178: 114552

[61]

Zafeiridou M, Hopkinson NS, Voulvoulis N. Cigarette smoking: an assessment of tobacco’s global environmental footprint across its entire supply chain. Environ Sci Technol, 2018, 52 15 8087- 8094

[62]

Zappe AL, de Oliveira PF, Boettcher R, Rodriguez AL, Machado ÊL, Dos Santos PAM, Lopez DAR, de Matos MAA. Human health risk and potential environmental damage of organic and conventional Nicotiana tobaccum production. Environ Pollut, 2020, 266: 114820

[63]

Zhang L, Li C, Liu Y, Sun Z, He Y, Wen D, Wang Y, Chen X, Cai H, Li G. Participation of urea-N absorbed on biochar granules among soil and tobacco plant (Nicotiana tabacumL.) And its potential environmental impact. Agric Ecosyst Environ, 2021, 313: 107371

[64]

Zheng X, Song W, Guan E, Wang Y, Hu X, Liang H, Dong J. Response in Physicochemical properties of Tobacco-growing soils and N/P/K Accumulation in Tobacco Plant to Tobacco Straw Biochar. J Soil Sci Plant Nutr, 2020, 20 2 293- 305

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/