Optimized CO2 photoreduction using cuprous oxide (Cu2O) nanoparticles synthesized using Psidium guajava extract

S. Torres-Arellano , E. Luevano-Hipolito , Mayte G. Fabela-Cedillo , J. L. Aleman-Ramirez , Leticia M. Torres-Martínez , P. J. Sebastian

Energy, Ecology and Environment ›› : 1 -13.

PDF
Energy, Ecology and Environment ›› :1 -13. DOI: 10.1007/s40974-024-00331-x
Original Article

Optimized CO2 photoreduction using cuprous oxide (Cu2O) nanoparticles synthesized using Psidium guajava extract

Author information +
History +
PDF

Abstract

Cu2O NPs were synthesized using aqueous extract of Psidium guajava.

Cu2O NPs were used as photocatalyst for CO2 photoreduction.

The products obtained from the photoreduction process were formic acid, methanol and formaldehyde.

Keywords

Green synthesis / Psidium guajava / Cu2O / Agro-industrial wastes / CO2 photoreduction

Cite this article

Download citation ▾
S. Torres-Arellano, E. Luevano-Hipolito, Mayte G. Fabela-Cedillo, J. L. Aleman-Ramirez, Leticia M. Torres-Martínez, P. J. Sebastian. Optimized CO2 photoreduction using cuprous oxide (Cu2O) nanoparticles synthesized using Psidium guajava extract. Energy, Ecology and Environment 1-13 DOI:10.1007/s40974-024-00331-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguirre ME, Zhou R, Eugene AJ, Guzman MI, Grela MA. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl Catal B, 2017, 217: 485- 493

[2]

Akrami S, Edalati P, Shundo Y, Watanabe M, Ishihara T, Fuji M, Edalati K. Significant CO2 photoreduction on a high-entropy oxynitride. Chem Eng J, 2022, 449: 137800

[3]

Aleman JL, Pérez BY, Torres S, Saldaña S, Longoria A, Sebastian PJ. Bioethanol production from ataulfo mango supplemented with vermicompost leachate. Catal Today, 2020, 353: 173- 179

[4]

Alemán JL, Okoye PU, Torres S, Mejía M, Sebastian PJ. A review on bioenergetic applications of Leucaena leucocephala. Ind Crops Prod, 2022, 182: 114847

[5]

Alexanda B, Masoudi S (2019) Optimization of Post Combustion CO2 Capture from a Combined-Cycle Gas Turbine Power Plant via Taguchi Design of Experiment. Processes 7(6): 364. https://doi.org/10.3390/pr7060364

[6]

Amadike E, Emmanuel O, Ebubechi M, Dike E, Chukwuebuka B, Ibe C, Chibueze V, Nwabu C, Chinyere O. The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. Arab J Chem, 2022, 15 5 103759

[7]

Apriandanu DOB, Yulizar Y. Tinospora crispa leaves extract for the simple preparation method of CuO nanoparticles and its characterization. Nano-Structures Nano-Objects, 2019, 20: 100401

[8]

Attia Y, Abdel SH. Nano Cu2O catalyzed ultrasonic-assisted green synthesis of some seleno[2,3-b] quinoline derivatives. J Organomet Chem, 2022, 960: 122245

[9]

Ávila MA, Luévano E, Torres LM. Optimizing the CO2 reduction to produce CH3OH using flexible NiMoO4 coatings as a photocatalyst. J Alloys Compd, 2022, 918: 165549

[10]

Biswal SK, Panigrahi GK, Sahoo SK. Green synthesis of Fe2O3-Ag nanocomposite using Psidium guajava leaf extract: an eco-friendly and recyclable adsorbent for remediation of cr(VI) from aqueous media. Biophys Chem, 2020, 263: 106392

[11]

Cai W, Yu X, Cao Y, Hu C, Wang Y, Zhao Y, Bu Y. Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2. J Environ Chem Eng, 2022, 10 3 107461

[12]

Celaya CA, Delesma C, Torres S, Sebastian PJ, Muñiz J. Understanding CO 2 conversion into hydrocarbons via a photoreductive process supported on the Cu2 O(1 0 0), (1 1 0) and (1 1 1) surface facets: a first principles study. Fuel, 2021, 306: 121643

[13]

Chen S, Zhang H, Yu X, Liu W. Photocatalytic reduction of Nitrobenzene by Titanium Dioxide Powder. Chin J Chem, 2010, 28 1 21- 26

[14]

Cheng X, Dong P, Huang Z, Zhang Y, Chen Y, Nie X, Zhang X. Green synthesis of plasmonic ag nanoparticles anchored TiO 2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J CO2 Utilization, 2017, 20: 200- 207

[15]

Chinnaiah K, Maik V, Kannan K, Potemkin V, Grishina M, Gohulkumar M, Tiwari R, Gurushankar K. Experimental and theoretical studies of Green synthesized Cu2O nanoparticles using Datura Metel L. J Fluoresc, 2022, 32 2 559- 568

[16]

Cui L, Hu L, Shen Q, Liu X, Jia H, Xue J. Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light. Appl Surf Sci, 2022, 581: 152343

[17]

Dedong Z, Maimaiti H, Awati A, Yisilamu G, Fengchang S, Ming W. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites. Chem Phys Lett, 2018, 700: 27- 35

[18]

Dou L, Zhang X, Zangeneh MM, Zhang Y. Efficient biogenesis of Cu2O nanoparticles using extract of Camellia sinensis leaf: evaluation of catalytic, cytotoxicity, antioxidant, and anti-human ovarian cancer properties. Bioorg Chem, 2021, 106: 104468

[19]

Elviera Y, Apriandanu DO, Marcony R. Fabrication of novel SnWO4/ZnO using Muntingia calabura L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation. Ceram Int, 2022, 48 3 3564- 3577

[20]

Fadhila FR, Umar A, Chandren S, Apriandanu DO, Yulizar Y. Biosynthesis of CoCr2O4/ZnO nanocomposites using Basella alba L. leaves extracts with enhanced photocatalytic degradation of malachite green in aqueous media. Chemosphere, 2024, 352: 141215

[21]

Faria AL, Centurion HA, Torres JA, Gonçalves RV, Ribeiro LS, Riberio C, Da Cruz JC, Nogueira FG. Enhancing Nb2O5 activity for CO2 photoreduction through Cu nanoparticles cocatalyst deposited by DC-magnetron sputtering. J CO2 Utilization, 2021, 53: 101739

[22]

Halomoan I, Yulizar Y, Surya RM, Apriandanu DO. Facile preparation of CuO-Gd2Ti2O7 using Acmella uliginosa leaf extract for photocatalytic degradation of malachite green. Mater Res Bull, 2022, 150: 111726

[23]

Indriyani A, Yulizar Y, Tri R, Oky Bagus, Marcony R. One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L leaves extracts for photocatalytic dye degradation. Appl Surf Sci, 2021, 563: 150113

[24]

Jiang H, Katsumata K, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Appl Catal B, 2018, 224: 783- 790

[25]

Jiang Y, Xia Shen L, Ma, Ma H, Sun T, Lv F, Zhu N. Facet-dependent Cu2O electrocatalysis for wearable enzyme-free Smart Sensing. ACS Catal, 2021, 11 5 2949- 2955

[26]

Kazemi S, Najinasab A, Nikbakht R, Dabiri M. Visible light assisted photocatalytic reduction of CO2 to methanol using Fe3O4@N-C/Cu2O nanostructure photocatalyst. J Photochem Photobiol A, 2020, 401: 112763

[27]

Kumari N, Kumari P, Jha AK, Prasad K (2020) Green synthesis of Cu2O nanoparticles using grape juice and its antimicrobial activity. AIP Conference Proceedings 2220: 020042. https://doi.org/10.1063/5.0002290

[28]

Kusumah AD, Yulizar Y, Apriandanu DO, Surya RM. Fabrication of ZnO and ZnO/CuMoO4 for the improvement of photocatalytic performance. Vacuum, 2024, 222: 113034

[29]

Liu SH, Lu JS, Pu YC, Fan HC. Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. J CO2 Utilization, 2019, 33: 171- 178

[30]

Lu X, Luo X, Tan JZ, Maroto MM. Simulation of CO2 photoreduction in a twin reactor by multiphysics models. Chem Eng Res Des, 2021, 171: 125- 138

[31]

Luévano E, Torres LM. Dolomite-supported Cu2O as heterogeneous photocatalysts for solar fuels production. Mater Sci Semiconduct Process, 2020, 116: 105119

[32]

Luévano E, Torres LM, Sánchez D, Alfaro MR. Cu2O precipitation-assisted with ultrasound and microwave radiation for photocatalytic hydrogen production. Int J Hydrog Energy, 2017, 42 18 12997- 13010

[33]

Luévano E, Torres LM, Ávila MA. Visible-light-driven CO2 reduction and H2 evolution boosted by 1D Cu2O/CuO heterostructures. J Phys Chem Solids, 2022, 170: 110924

[34]

Mallik M, Monia S, Gupta M, Ghosh A, Toppo MP, Roy H. Synthesis and characterization of Cu2O nanoparticles. J Alloys Compd, 2020, 829: 154623

[35]

Marcony R, Mauliddiyah S, Bagus DO, Sudirman, Yulizar Y. SmMnO3-decorated ZnO in a hexane-water interface for enhancing visible light-driven photocatalytic degradation of malachite green. Chemosphere, 2022, 304: 135125

[36]

Mitra A. The Taguchi method. WIRE Comput Stat, 2011, 3 5 472- 480

[37]

Monteiro J, Roussanaly S. CCUS scenarios for the cement industry: is CO2 utilization feasible?. J CO2 Utilization, 2022, 61: 102015

[38]

Mou Q, Guo Z, Chai Y, Liu B, Liu C. Visible-light assisted photoreduction of CO2 using CdS-decorated Bi24O31Br10. Mater Sci Semiconduct Process, 2021, 134: 106011

[39]

NganDo T, You C, Park M, Kim C, Lee S, Kim J. Optimization-based assessment framework for CO2 utilization to fuels strategies. Comput Aided Chem Eng, 2022, 51: 763- 768

[40]

Ovcharov ML, Mishura AM, Shcherban ND, Filonenko SM, Granchak VM. Photocatalytic reduction of CO2 using nanostructured Cu2O with foam-like structure. Sol Energy, 2016, 139: 452- 457

[41]

Peixoto JC, Nogueira AE, Dias A, Torres JA, Da Cruz JC, Ribeiro C, Siqueira Experimental evaluation of the activity and selectivity of pure MnWO4 and doped with rare earth ions in the CO2 photoreduction process. Mater Res Bull, 2022, 153: 111912

[42]

Punnam PR, Dutta A, Krishnamurthy B, Surasani VK (2023) Study on utilization of machine learning techniques for geological CO2 sequestration simulations. Materials Today: Proceedings 72: 378–385. https://doi.org/10.1016/j.matpr.2022.08.109

[43]

Rahman A, Chowdhury MA, Hossain Green synthesis of hybrid nanoparticles for biomedical applications: a review. Appl Surf Sci Adv, 2022, 11: 100296

[44]

Sampaio S, Viana JC. Optimisation of the green synthesis of Cu/Cu2O particles for maximum yield production and reduced oxidation for electronic applications. Mater Sci Engineering: B, 2021, 263: 114807

[45]

Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med, 2014, 7 12 968- 976

[46]

Sathiyavimal S, Vasantharaj S, Veeramani V, Saravanan M, Rajalakshmi G, Kaliannan T, Al-Misned, Pugazhendhi A. Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J Environ Chem Eng, 2021, 9 2 105033

[47]

Syed F, Ullah A. Estimation of economic benefits associated with the reduction in the CO2 emission due to COVID-19. Environ Challenges, 2021, 3: 100069

[48]

Tian X, Wen J, Chen Z, Liu X, Peng H, Ji C, Li J, Peng Y, He H. One-pot green hydrothermal synthesis and visible-light photocatalytic properties of Cu2O/Cu hybrid composites using egg albumin as structure modifier. Solid State Sci, 2019, 93: 70- 78

[49]

Torres S, Reyes O, Pantoja J, Aleman JL, Huerta A, Moreira J, Muñiz J, Vargas L, Sebastian PJ. Biosynthesis of cuprous oxide using banana pulp waste extract as reducing agent. Fuel, 2021, 285: 119152

[50]

Torres S, Torres LM, Luévano E, Aleman JL, Sebastian PJ. Biologically mediated synthesis of CuO nanoparticles using corn COB (Zea mays) ash for photocatalytic hydrogen production. Mater Chem Phys, 2023, 301: 127640

[51]

Valls Martínez S, Jaén S, Román Martín. Are gender and cultural diversities on board related to corporate CO2 emissions?. J Clean Prod, 2022, 363: 132638

[52]

Wang H, Cheng S, Cai X, Cheng L, Zhou R, Hou T, Li Y. Photocatalytic CO2 reduction to HCOOH over core-shell Cu@Cu2O catalysts. Catal Commun, 2022, 162: 106372

[53]

Wu X, Li Y, Zhang G, Chen H, Li J, Wang K, Pan Y, Zhao Y, Sun Y, Xie Y. Photocatalytic CO 2 Conversion of M 0.33 WO 3 directly from the air with high selectivity: insight into full Spectrum-Induced reaction mechanism. J Am Chem Soc, 2019, 141 13 5267- 5274

[54]

Xie S, Deng C, Huang Q, Zhang C, Chen C, Zhao J, Sheng H. Facilitated Photocatalytic CO 2 reduction in aerobic environment on a copper-porphyrin metal–Organic Framework. Angew Chem Int Ed, 2023, 62 10 e202216717

[55]

Yao S, Sun BQ, Zhang P, Tian Z-Y, Yin H-Q, Zhang ZM. Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Appl Catal B, 2022, 317: 121702

[56]

Yulizar Y, Gunlazuardi J, Apriandanu S. CuO-modified CoTiO3 via Catharanthus roseus extract: a novel nanocomposite with high photocatalytic activity. Mater Lett, 2020, 277: 128349

[57]

Zhu Q, Cao Y, Tao Y, Li T, Zhang Y, Shang H, Song J, Li G. CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in situ derived from amino modified Cu-MOF. J CO2 Utilization, 2021, 54: 101781

Funding

CONAHCYT(619727)

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México(IN108922)

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/