Effect of heating tube arrangement on nano-enhanced thermal energy storage

Benharzallah Boumaza , Abdelghani Laouer , Mohamed Teggar , Belkacem Agagna , Kamal A. R. Ismail , Müslüm Arıcı

Energy, Ecology and Environment ›› 2023, Vol. 8 ›› Issue (6) : 570 -585.

PDF
Energy, Ecology and Environment ›› 2023, Vol. 8 ›› Issue (6) : 570 -585. DOI: 10.1007/s40974-023-00291-8
Original Article

Effect of heating tube arrangement on nano-enhanced thermal energy storage

Author information +
History +
PDF

Abstract

Improvement of thermal performance of energy storage leads to energy savings and reduction of carbon emissions. In this study, the effect of tube arrangement on the performance of thermal energy storage is examined during the melting process of a phase change material (RT50). The heat transfer and phase change modeling are based on conservation equations and lattice Boltzmann method. The combined effect of the tube's vertical position and nanoparticles are studied for various nanoparticle concentrations and Rayleigh numbers. Natural convection, melt fraction, heat storage, and storage time are examined and discussed. The results indicate that tubes placed at the horizontal centerline of the cavity is the best arrangement for reducing the charging time at low heating rates (Ra = 104), while downward displacement of one heating tube is more effective at high heating rates (Ra ≥ 105), the loading time can be reduced by up to 28%. The results of this study can guide design of efficient thermal energy storage systems.

Keywords

Heat transfer enhancement / Latent heat / Tube arrangement / Phase change / Thermal energy storage

Cite this article

Download citation ▾
Benharzallah Boumaza, Abdelghani Laouer, Mohamed Teggar, Belkacem Agagna, Kamal A. R. Ismail, Müslüm Arıcı. Effect of heating tube arrangement on nano-enhanced thermal energy storage. Energy, Ecology and Environment, 2023, 8(6): 570-585 DOI:10.1007/s40974-023-00291-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajarostaghi MSS, Poncet S, Sedighi K, Aghajani Delavar M. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application. Appl Sci, 2019, 9: 2726

[2]

Alawadhi EM. A solidification process with free convection of water in an elliptical enclosure. Energy Convers Manag, 2009, 50: 360-364

[3]

Choi S-K, Kim S-O, Lee T-H, Dohee H. Computation of the natural convection of nanofluid in a square cavity with homogeneous and nonhomogeneous models. Numer Heat Transf a: Applications, 2014, 65: 287-301

[4]

Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model, 2012, 36: 4080-4086

[5]

Filippova O, Hänel D. Grid refinement for lattice-BGK models. J Comput Phys, 1998, 147: 219-228

[6]

Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Transf, 1986, 108: 174-181

[7]

Habeebullah BA. An experimental study on ice formation around horizontal long tubes. J Int Acad Refrig, 2007, 30: 789-797

[8]

Hosseini MJ, Ranjbar AA, Sedighi K, Rahimi M. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. Int Commun Heat Mass Transf, 2012, 39: 1416-1424

[9]

Huo Y, Rao Z. The quasi-enthalpy based lattice Boltzmann model for solid-liquid phase change. Appl Therm Eng, 2017, 115: 1237-1244

[10]

Ismail KAR, Henŕiquez JR. Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl Therm Eng, 2002, 22: 1705-1716

[11]

Ismail KAR, Quispe OC, Henŕiquez JR. A numerical and experimental study on a parallel plate ice bank. Appl Therm Eng, 1999, 19: 163-193

[12]

Ismail KAR, Henríquez JR, da Silva TM. A parametric study on ice formation inside a spherical capsule. Int J Therm Sci, 2003, 42: 881-887

[13]

Ismail KAR, Filho LMdS, Lino FAM. Solidification of PCM around a curved tube. Int J Heat Mass Transf, 2012, 55: 1823-1835

[14]

Jiaung W-S, Jeng-Rong H, Chun-Pao K. Lattice Boltzmann method for the heat conduction problem with phase change. N Numer Heat Transf b: Fundamentals, 2001, 39: 167-187

[15]

Kadivar MR, Moghimi MA, Sapin P, Markides CN. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. J Energy Storage, 2019, 26: 101030

[16]

Kashani S, Ranjbar AA, Abdollahzadeh M, Sebti S. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transf, 2012, 48: 1155-1166

[17]

Laouer A, Al-Farhany K. Melting of nano-enhanced phase change material in a cavity heated sinusoidal from below: Numerical study using lattice Boltzmann method. Heat Transfer, 2022, 51: 5952-5970

[18]

Laouer A Effect of Magnetic field and nanoparticle concentration on melting of cu-ice in a rectangular cavity under fluctuating temperatures. J Energy Storage, 2021, 36: 102421

[19]

Laouer A, Teggar M, Tunçbilek E, Arıcı M, Hachani L, Ismail KAR. Melting of hybrid nano-enhanced phase change material in an inclined finned rectangular cavity for cold energy storage. J Energy Storage, 2022, 50: 104185

[20]

Mehryan SAM, Tahmasebi A, Izadi M, Ghalambaz M. Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. Int J Heat Mass Transf, 2020, 149: 119184

[21]

Mohamad A. Lattice boltzmann method, 2011 Berlin Springer

[22]

Mousavi Ajarostaghi SS, Sedighi K, Delavar MA, Poncet S. Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Appl Sci, 2019, 2: 109

[23]

Nedjem K, Teggar M, Hadibi T, Arıcı M, Yıldız Ç, Ismail KAR. Hybrid thermal performance enhancement of shell and tube latent heat thermal energy storage using nano-additives and metal foam. J Energy Storage, 2021, 44: 103347

[24]

Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Comput Appl Math, 2018, 316: 30-42

[25]

Pakzad K, Mousavi Ajarostaghi SS, Sedighi K. Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Appl Sci, 2019, 1: 1258

[26]

Samanta R, Chattopadhyay H, Guha C. A review on the application of lattice Boltzmann method for melting and solidification problems. Comput Appl Math, 2022, 206: 111288

[27]

Sugawara M, Beer H. Numerical analysis for freezing/melting around vertically arranged four cylinders. Heat Mass Transf, 2009, 45: 1223-1231

[28]

Sugawara M, Komatsu Y, Beer H. Melting of ice stuck on cylinders placed horizontally in a water flowing duct. Heat Mass Transf, 2016, 52: 693-700

[29]

Teggar M Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: a state-of-the-art review. J Energy Storage, 2021, 44: 103340

[30]

Teggar M A comprehensive review of micro/nano enhanced phase change materials. J Therm Anal Calorim, 2022, 147: 3989-4016

[31]

Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow, 2010, 31: 613-621

[32]

Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf, 2000, 43: 3701-3707

[33]

Yan YY, Zu YQ. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—A LBM approach. Int J Heat Mass Transf, 2008, 51: 2519-2536

[34]

Yazici MY, Avci M, Aydin O, Akgun M. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM. Appl Therm Eng, 2014, 64: 1-9

[35]

Yin X, Liang G, Wang J, Shen S. Vapor condensation on micropillar structured surface with lattice Boltzmann method. Int Comm Heat Mass Transf, 2022, 138: 106357

[36]

Yodono T, Yaji K, Yamada T, Furuta K, Izui K, Nishiwaki S. Topology optimization for the elastic field using the lattice Boltzmann method. Comput Math Appl, 2022, 110: 123-134

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/