Regionally extended shared socioeconomic pathways for the offshore wind industry in Finland

Jamie Jenkins , Maria Malho , Kari Hyytiäinen

Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (6) : 533 -545.

PDF
Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (6) : 533 -545. DOI: 10.1007/s40974-022-00252-7
Original Article

Regionally extended shared socioeconomic pathways for the offshore wind industry in Finland

Author information +
History +
PDF

Abstract

Offshore wind energy is increasingly becoming an important part of European and global low-emission power systems. The aims of this paper are to create a shared understanding on the major drivers of offshore wind development in Finland and to explore how these drivers, and opportunities for the entire industry, may develop over the twenty-first century, under different global futures. This research develops extended shared socioeconomic pathway (SSP) narratives for the offshore wind industry by using a virtual participatory workshop with expert stakeholders. According to our results, the five key drivers shaping the prospects of offshore wind development are public acceptability of offshore energy, global and national demand for low-emission energy, technological development and relative competitiveness of offshore energy, availability of space and wind resources, and energy markets and transmission infrastructure. Nationally extended SSP narratives, building on these key drivers, describe a wide range of alternative future risks and opportunities for developing offshore energy. Under sustainable development (SSP1), offshore wind is likely to soon become a major source of energy in the area, if developed in a balanced manner alongside other uses of the marine space. Under fossil-fuelled development (SSP5), offshore wind grows slower and may experience rapid uptake only in the latter half of the century. Under the regional rivalry scenario (SSP3), the need for local energy sources drives the national energy policies and may create new opportunities for offshore wind. Under the inequality scenario (SSP4), local municipalities and the residents decide on locations of new wind turbines and the overall magnitude of future offshore wind.

Keywords

Scenario narratives / Renewable energy transition / Renewable energy / Participatory planning

Cite this article

Download citation ▾
Jamie Jenkins, Maria Malho, Kari Hyytiäinen. Regionally extended shared socioeconomic pathways for the offshore wind industry in Finland. Energy, Ecology and Environment, 2022, 7(6): 533-545 DOI:10.1007/s40974-022-00252-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Absar SM, Preston BL. Extending the shared socioeconomic pathways for sub-national impacts, adaptation, and vulnerability studies. Glob Environ Chang, 2015, 33: 83-96

[2]

Austin JE, Seitanidi MM (2012a) Part 2: Partnership processes and outcomes. Nonprofit Volunt Sect Quart 41(6):929–968. https://doi.org/10.1177/0899764012454685

[3]

Austin JE, Seitanidi MM (2012b) Collaborative value creation: a review of partnering between nonprofits and businesses: Part I. Value creation spectrum and collaboration stages. Nonprofit Volunt Sect Quart 41(5):726–758. https://doi.org/10.1177/0899764012450777

[4]

Bauer N, Hilaire J, Brecha RJ, Edmonds J, Jiang K, Kriegler E, Rogner H-H, Sferra F. Assessing global fossil fuel availability in a scenario framework. Energy (oxford), 2016, 111: 580-592

[5]

Bauer N, Calvin K, Emmerling J, Fricko O, Fujimori S, Hilaire J, Eom J, Krey V, Kriegler E, Mouratiadou I, Sytze de Boer H, van den Berg M, Daioglou S, Drouet L, Edmonds JE, Gernaat D, Havlik P, Johnson N, Klein D, Kyle P, Marangoni G, Masui T, Pietzckera RC, Strubegger M, Wise M. Shared socio-economic pathways of the energy sector—quantifying the narratives. Glob Environ Chang, 2017, 42: 316-330

[6]

Beiderbeck D, Frevel N, von der Gracht HA, Schmidt SL, Schweitzer VM. The impact of COVID-19 on the European football ecosystem—a Delphi-based scenario analysis. Technol Forecast Soc Chang, 2021, 165

[7]

Bilgili M. Offshore wind power development in Europe and its comparison with onshore counterpart. Renew Sustain Energy Rev, 2011, 15(2): 905-915

[8]

Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, Hartin C, Kim S, Kyle P, Link R, Moss R, McJeon H, Patel P, Smith S, Waldhoff S, Wise M. The SSP4: a world of deepening inequality. Glob Environ Chang, 2017, 42: 284-296

[9]

Culot G, Orzes G, Sartor M, Nassimbeni G. The future of manufacturing: a Delphi-based scenario analysis on Industry 4.0. Technol Forecast Soc Chang, 2020, 157: 120092-120092

[10]

Dellink R, Chateau J, Lanzi E, Magné B. Long-term economic growth projections in the shared socioeconomic pathways. Glob Environ Chang, 2017, 42: 200-214

[11]

Devine-Wright P. Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy (chichester, England), 2005, 8(2): 125-139

[12]

Dutta N, Noble B, Poelzer G, Hanna K. From project impacts to strategic decisions: recurring issues and concerns in wind energy environmental assessments. Environ Manage N Y, 2021, 68(4): 591-603

[13]

Global Wind Energy C (2020) Global Offshore Wind Report 2020 (1944–1878). Retrieved from Atlanta: https://gwec.net/global-offshore-wind-report-2020/

[14]

Fujimori S, Hasegawa T, Masui T, Takahashi K, Herran DS, Dai H, Hijioka Y, Kainuma M. SSP3: AIM implementation of Shared Socioeconomic Pathways. Glob Environ Chang, 2017, 42: 268-283

[15]

Gudowsky N, Sotoudeh M. Into blue skies—a transdisciplinary foresight and co-creation method for adding robustness to visioneering. NanoEthics, 2017, 11(1): 93-106

[16]

Hüffmeier J, Goldberg M (2019) Offshore wind and grid in the Baltic sea—status and outlook until 2050. Retrieved from https://vasab.org/wp-content/uploads/2019/05/Baltic-LINes-Offshore-Wind-and-Grid-in-the-Baltic-Sea-%E2%80%93-Status-and-Outlook-until-2050.pdf

[17]

International Energy A (2021) World energy model documentation. Retrieved from https://iea.blob.core.windows.net/assets/932ea201-0972-4231-8d81-356300e9fc43/WEM_Documentation_WEO2021.pdf

[18]

Jones CR, Richard Eiser J. Understanding ‘local’ opposition to wind development in the UK: How big is a backyard?. Energy Policy, 2010, 38(6): 3106-3117

[19]

Jungk R, Mullert N (1987) European futures texts—futures Workshops. How to Create Desirable Futures by Robert Jungk and Norbert Mullert. Futures J Policy Plan Futures Stud 25(3):362.

[20]

Ker Rault PA, Koundouri P, Akinsete E, Ludwig R, Huber-Garcia V, Tsani S, Acuna V, Kalogianni E, Luttik J, Kok K, Skoulikidis N, Froebrich J (2019) Down scaling of climate change scenario to river basin level: a transdisciplinary methodology applied to Evrotas river basin, Greece. Sci Total Environ 660:1623–1632. https://doi.org/10.1016/j.scitotenv.2018.12.369

[21]

Kern F, Smith A, Shaw C, Raven R, Verhees B. From laggard to leader: explaining offshore wind developments in the UK. Energy Policy, 2014, 69: 635-646

[22]

Kok K, Pedde S, Gramberger M, Harrison PA, Holman IP. New European socio-economic scenarios for climate change research: operationalising concepts to extend the shared socio-economic pathways. Reg Environ Change, 2018, 19(3): 643-654

[23]

Kriegler E, Bauer N, Popp A, Humpenöder F, Leimbach M, Strefler J, Baumstark L, Bodirsky BL, Hilaire J, Klein D, Mouratiadou I, Weindl I, Bertram C, Dietrich JP, Luderer G, Pehl M, Pietzcker RC, Piontek F, Lotze-Campen H, Biewald A, Bonsch M, Giannousakis A, Kreidenweis U, Müller C, Rolinski S, Schultes A, Schwanitz J, Stevanović M, Calvin K, Emmerling J, Fujimori S, Edenhofer O. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Glob Environ Chang, 2017, 42: 297-315

[24]

Lehtonen HS, Aakkula J, Fronzek S, Helin J, Hildén M, Huttunen S, Kaljonen S, Niemi M, Palosuo J, Pirttioja T, Rikkonen N, Varho P, Carter V, Timothy R. Shared socioeconomic pathways for climate change research in Finland: co-developing extended SSP narratives for agriculture. Reg Environ Change, 2021, 21(1): 7

[25]

Leimbach M, Kriegler E, Roming N, Schwanitz J. Future growth patterns of world regions—a GDP scenario approach. Glob Environ Chang, 2017, 42: 215-225

[26]

Liu TY, Tavner PJ, Feng Y, Qiu YN. Review of recent offshore wind power developments in china. Wind Energy (chichester, England), 2013, 16(5): 786-803

[27]

Martinez A, Iglesias G. Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Convers Manage, 2021, 234

[28]

Mauser W, Klepper G, Rice M, Schmalzbauer BS, Hackmann H, Leemans R, Moore H. Transdisciplinary global change research: the co-creation of knowledge for sustainability. Curr Opin Environ Sustain, 2013, 5(3–4): 420-431

[29]

Metsähallitus (2020) Great potential in offshore wind power. Retrieved from https://www.metsa.fi/en/responsible-business/wind-power/great-potential-in-offshore-wind-power/

[30]

Mooney TA, Mathias HA, Jenni S (2020) Acoustic impacts of offshore wind energy on fishery resources: an evolving source and varied effects across a Wind Farm’s Lifetime. Oceanography (Washington, D.C.), 33(4):82–95.

[31]

Mu JE, Antle JM, Abatzoglou JT. Representative agricultural pathways, climate change, and agricultural land uses: an application to the Pacific Northwest of the USA. Mitig Adapt Strat Glob Change, 2019, 24(5): 819-837

[32]

Nilsson AE, Bay-Larsen I, Carlsen H, van Oort B, Bjørkan M, Jylhä K, Klyuchnikova E, van der Masloboev V, Watt L-M. Towards extended shared socioeconomic pathways: a combined participatory bottom-up and top-down methodology with results from the Barents region. Glob Environ Chang, 2017, 45: 124-132

[33]

Normann S. Green colonialism in the nordic context: exploring Southern Saami representations of wind energy development. J Community Psychol, 2021, 49(1): 77-94

[34]

O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijvena BS, van Vuurenh DP, Birkmann J, Kok K, Levy M, Solecki W. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Chang, 2017, 42(January): 169-180

[35]

O’Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E, Kok K, Kriegler E, Preston BL, Riahi K, Sillmann J, van Ruijven BS, van Vuuren D, Carlisle D, Conde C, Fuglestvedt J, Green C, Hasegawa T, Leininger J, Monteith S, Pichs-Madruga R. Achievements and needs for the climate change scenario framework. Nat Clim Chang, 2020, 10(12): 1074-1084

[36]

Official Statistics of, F (2020) Energy supply and consumption. Retrieved from http://www.stat.fi/til/ehk/index_en.html

[37]

Parliament E (2022) A European strategy for offshore renewable energy. Retrieved from https://www.europarl.europa.eu/doceo/document/TA-9-2022-0032_EN.pdf

[38]

Pfeiffer O, Nock D, Baker E. Wind energy's bycatch: offshore wind deployment impacts on hydropower operation and migratory fish. Renew Sustain Energy Rev, 2021, 143

[39]

Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gust M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riah K, van Vuuren DP. Land-use futures in the shared socio-economic pathways. Glob Environ Chang, 2017, 42: 331-345

[40]

Popper R (2008) The handbook of technology foresight: concepts and practice, vol. 10. Emerald Group Publishing Limited, Bingley.

[41]

Finnish Wind Power A (2021) Wind Power Project Pipeline 01/2021. Retrieved from https://tuulivoimayhdistys.fi/en/wind-power-in-finland/projects-under-planning

[42]

Rakovic J, Futter MN, Kyllmar K, Rankinen K, Stutter MI, Vermaat J, Collentine D. Nordic bioeconomy pathways: future narratives for assessment of water-related ecosystem services in agricultural and forest management. Ambio, 2020, 49(11): 1710-1721

[43]

Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Samir KC, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Tomoko Hasegawa KE, Havlik P, Humpenöder F, SilvaLA Da, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-campen H, Obersteiner M, Tabeau A, Tavoni M. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang, 2017, 42: 153-168

[44]

Samir KC, Lutz W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Chang, 2017, 42: 181-192

[45]

Schiffer H-W, Kober T, Panos E. World Energy Council's Global Energy Scenarios to 2060/Perspektiven der weltweiten Energieversorgung bis 2060 – Die Szenarien des World Energy Councils. Zeitschrift Für Energiewirtschaft, 2018, 42(2): 91

[46]

Shell I (2017) Shell energy scenarios Germany. Retrieved from https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/what-are-scenarios/_jcr_content/par/tabbedcontent/tab/textimage_25172244.stream/1504104048141/87b2684f712f1da82ef32d07b19555920412d451/shell-energy-scenarios-germany.pdf

[47]

Soares-Ramos E, de Oliveira-Assis L, Sarrias-Mena R, Fernández-Ramírez LM. Current status and future trends of offshore wind power in Europe. Energy (Oxford), 2020, 202

[48]

Spiecker S, Weber C. The future of the European electricity system and the impact of fluctuating renewable energy—a scenario analysis. Energy Policy, 2014, 65: 185-197

[49]

Suškevičs M, Eiter S, Martinat S, Stober D, Vollmer E, de Boer CL, Buchecker M. Regional variation in public acceptance of wind energy development in Europe: What are the roles of planning procedures and participation?. Land Use Policy, 2019, 81: 311-323

[50]

Szpak A. Relocation of Kiruna and construction of the Markbygden wind farm and the Saami rights. Polar Sci, 2019, 22

[51]

van Ruijven BJ, Levy MA, Agrawal A, Biermann F, Birkmann J, Carter TR, Ebi KL, Garschagen M, Jones B, Jones R, Kemp-Benedict E, Kok M, Kok K, Lemos MC, Lucas PL, Orlove B, Pachauri S, Parris TM, Patwardhan A, Petersen A, Preston BL, Ribot J, Rothman DS, Schweizer VJ. Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research. Clim Change, 2014, 122(3): 481-494

[52]

van Vuuren DP, Stehfest E, Gernaat DEHJ, Doelman JC, van den Berg M, Harmsen M, de Boer HS, Bouwman LF, Daioglou V, Edelenbosch OY, Girod B, Kram T, Lassaletta L, Lucas PL, van Meijl H, Müller C, van Ruijven BJ, van der Sluis S, Tabeau A. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob Environ Chang, 2017, 42: 237-250

[53]

Van Vuuren DP, Bouwman AF, Beusen AHW. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Glob Environ Chang, 2010, 20(3): 428-439

[54]

Victor PA. Growth, degrowth and climate change: a scenario analysis. Ecol Econ, 2012, 84: 206-212

[55]

Virtanen EA, Lappalainen J, Nurmi M, Viitasalo M, Tikanmäki M, Heinonen J, Atlaskin E, Kallasvuo M, Tikkanen H, Moilanen A (2022) Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design. Renew Sustain Energy Rev 158. https://doi.org/10.1016/j.rser.2022.112087

[56]

Voltaire L, Loureiro ML, Knudsen C, Nunes PALD. The impact of offshore wind farms on beach recreation demand: policy intake from an economic study on the Catalan coast. Mar Policy, 2017, 81: 116-123

[57]

WindEurope (2020) Offshore Wind in Europe—Key Trends and Statistics. Retrieved from https://proceedings.windeurope.org/biplatform/rails/active_storage/disk/eyJfcmFpbHMiOnsibWVzc2FnZSI6IkJBaDdDRG9JYTJWNVNTSWhkV1J2ZFhoa1lXdDBOVEo1ZDI1MU1ETTBOMlpyTldSNWVtZHdkd1k2QmtWVU9oQmthWE53YjNOcGRHbHZia2tpQVpKcGJteHBibVU3SUdacGJHVnVZVzFsUFNKWGFXNWtSWFZ5YjNCbExVOW1abk5vYjNKbExYZHBibVF0YVc0dFJYVnliM0JsTFhOMFlYUnBjM1JwWTNNdE1qQXlNQzV3WkdZaU95Qm1hV3hsYm1GdFpTbzlWVlJHTFRnbkoxZHBibVJGZFhKdmNHVXRUMlptYzJodmNtVXRkMmx1WkMxcGJpMUZkWEp2Y0dVdGMzUmhkR2x6ZEdsamN5MHlNREl3TG5Ca1pnWTdCbFE2RVdOdmJuUmxiblJmZEhsd1pVa2lGR0Z3Y0d4cFkyRjBhVzl1TDNCa1pnWTdCbFE9IiwiZXhwIjoiMjAyMi0wNi0xM1QwODo0NTowOS41ODZaIiwicHVyIjoiYmxvYl9rZXkifX0=--0f58902dab89d5939b12a15a15a6404c9001ee54/WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf?content_type=application%2Fpdf&disposition=inline%3B+filename%3D%22WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf%22%3B+filename%2A%3DUTF-8%27%27WindEurope-Offshore-wind-in-Europe-statistics-2020.pdf

[58]

Zandersen M. Shared socio-economic pathways extended for the Baltic Sea: exploring long-term environmental problems. Reg Environ Change, 2019, 19(4): 1073-1086

[59]

Zhang C, Su B, Zhou K, Yang S. Decomposition analysis of China's CO2 emissions (2000–2016) and scenario analysis of its carbon intensity targets in 2020 and 2030. Sci Total Environ, 2019, 668: 432-442

Funding

Strategic Research Council

University of Helsinki including Helsinki University Central Hospital

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/