Short-term effects of forest management on litter decomposition in Caatinga dry forest

Priscila Silva Matos , Patrícia Anjos Bittencourt Barreto-Garcia , Emanuela Forestieri Gama-Rodrigues , Alessandro de Paula , Ariane Miranda de Oliveira

Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (2) : 130 -141.

PDF
Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (2) : 130 -141. DOI: 10.1007/s40974-021-00231-4
Original Article

Short-term effects of forest management on litter decomposition in Caatinga dry forest

Author information +
History +
PDF

Abstract

The Caatinga is a Brazilian biome, which belongs to the group of dry tropical forests and constitutes one of the largest semiarid areas in the world, with high housing levels of biodiversity. Despite this, the biome has been intensely impacted by anthropic interference, which makes sustainable forest management (SFM) practices an opportunity to associate the conservation of the biome with the generation of income. However, the effects of different SFM practices on the Caatinga balance have not yet been addressed, especially concerning soil and litter. This study aims to answer the following questions: (1) Do forest management practices influence leaf litter’s decomposition and chemical composition? (2) Does the effect of forest management on litter decomposition vary according to its level of intervention in the vegetation? For this, the leaf litter decomposition was evaluated in three forest management conditions and a control condition: clear cutting (CC), selective cutting by minimum diameter (SCD), selective cutting by species (SCS), and unmanaged Caatinga (UC). Decomposition was evaluated using the litterbags method over 260 days. The levels of total nitrogen, polyphenols, lignin, and cellulose in the leaf litter were determined at the beginning and end of the experiment. Our results showed the participation of leaves in the total litter (CC = 15%; SCD = 24%; SCS = 46%; UC = 55%). In all treatments, the leaf material decomposition process occurred with greater intensity after 120 days, reaching losses greater than 33% at 180 days. The management SCS is the practice that most favors the litter decomposition process with the most expressive value of k constant (0.0038 g g−1 dia−1) and half-life of 182 days compared to the others and may have future implications for nutrient cycling. On the other hand, CC and SCD were the practices that most increased the amount and composition of the accumulated litter and the mineralization of chemical compounds of the leaf litter.

Keywords

Nutrient cycling / Forest ecosystems / Sustainable exploration

Cite this article

Download citation ▾
Priscila Silva Matos, Patrícia Anjos Bittencourt Barreto-Garcia, Emanuela Forestieri Gama-Rodrigues, Alessandro de Paula, Ariane Miranda de Oliveira. Short-term effects of forest management on litter decomposition in Caatinga dry forest. Energy, Ecology and Environment, 2022, 7(2): 130-141 DOI:10.1007/s40974-021-00231-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alves AR, Souto JS, Souto PC, Holanda AC. Aporte e decomposição de serapilheira em área de Caatinga, na Paraíba. Rev Biol Ciênc Terra, 2006, 6: 194-203

[2]

Amorim IL, Sampaio EVSB, Araújo EL. Flora e estrutura da vegetação arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. Acta Bot Bras, 2005, 19: 615-623

[3]

Anderson JD, Ingram JSI. Tropical soil biology and fertility: a handbook of methods, 1996 2 Wallingford CAB International 171p

[4]

Barreto-Garcia PAB, Batista SGM, Gama-Rodrigues EF, Paula A, Batista WCA. Short-term effects of forest management on soil microbial biomass and activity in Caatinga dry forest. Brazil Forest Ecol Manag, 2021, 481

[5]

Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Métodos de análise química de plantas. Campinas: Instituto Agronômico. (Boletim Técnico, 78).

[6]

Batista SGM, Barreto-Garcia PAB, Paula A, Miguel DL, Batista WAB. Oxidizable fractions of soil organic carbon in Caatinga forest submitted to different forest managements. Cienc Rural, 2018, 48: 1-5

[7]

Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr, 2015, 58: 116-127

[8]

Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. Understanding the dominant controls on litter decomposition. J Ecol, 2016, 104: 229-238

[9]

Brasil (1994) Resolução CONAMA n◦. 1, de 31 de Janeiro de 1994. Diario Oficial da República Federativa do Brasil, Brasília, DF. pp.167–169. In: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=142. Access: July 6th, 2020.

[10]

Busse Matt, Gerrard Ross. Thinning and Burning Effects on Long-Term Litter Accumulation and Function in Young Ponderosa Pine Forests. Forest Science, 2020, 66(6): 761-769

[11]

Carvalho Arminda Moreira de, Souza Lara Line Pereira de, Guimarães Júnior Roberto, Alves Pedro Cesar Almeida Castro, Vivaldi Lúcio José. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region. Pesquisa Agropecuária Brasileira, 2011, 46(10): 1200-1205

[12]

Chen Y, Liu Y, Zhang J, Yang W, He R, Deng C. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci Rep, 2018, 8: 1-13

[13]

Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Westoby M. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett, 2008, 11: 1065-1071 PMID:18627410

[14]

Correia MEF, Andrade AG (1999) Formação de serapilheira e ciclagem de nutrientes. In: Santos GA., Camargo FAO (eds) Fundamentos da Matéria Orgânica do Solo: ecossistemas tropicais e subtropicais. Porto Alegre: Genesis, pp.197–226.

[15]

Costa GS, Gama-Rodrigues AC, Cunha GM. Decomposição e liberação de nutrientes da serapilheira foliar em povoamentos de Eucalyptus grandis no norte Fluminense. Rev Árvore, 2005, 29: 563-570

[16]

Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix Michelle L, Wall DH, Parton WJ. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci, 2015, 8: 776-780

[17]

da Gama-Rodrigues AC, Forestieri da Gama-Rodrigues E, Brito EC. Decomposição e liberação de nutrientes de resíduos culturais de plantas de cobertura em Argissolo vermelho-amarelo na região noroeste fluminense (RJ). Rev Bras Ciênc Solo, 2007, 31: 1421-1428

[18]

Day J, Dudley N, Hockings M, Holmes G, Laffoley D, Stolton S, Wells S. Guidelines for applying the IUCN Protected Area Management Categories to Marine Protected Areas, 2012 Gland, Switzerland IUCN 36p

[19]

Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Gutiérrez-Girón A. Early stage litter decomposition across biomes. Sci Total Environ, 2018, 628–629: 1369-1394

[20]

Eisenhauer Nico, Hines J, Isbell F, Plas F, Robbie SE, Kazanski CE, Lehmann A, Liu M, Lochner A, Rillig MR, Vogel A, Worm K, Reich PB. Plant diversity maintains multiple soil functions in future environments. eLife, 2018, 7: e41228

[21]

EMBRAPA – Embrapa Informação Tecnológica (2007) Preservação e uso da Caatinga (ABC da Agricultura Familiar, 16), Brasília - DF. 39 p

[22]

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2017) Manual de métodos de análise de solo, 3th ed., Brasília - DF, 573 p

[23]

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2018) Sistema Brasileiro de Classificação de Solos, 5th ed., Brasília - DF, 356 p

[24]

Fernandes MF, Queiroz LP (2018) Vegetação e flora da Caatinga. Cienc Cult 70:51–56. https://doi.org/10.21800/2317-66602018000400014

[25]

Gama-Rodrigues AC, Barros NF, Santos ML. Decomposição e liberação de nutrientes do folhedo de espécies florestais nativas em plantios puros e mistos no sudeste da Bahia, Brasil. Rev Bras Ciênc Solo, 2003, 27: 1021-1031

[26]

García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S. Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. J Ecol, 2017, 105: 968-978

[27]

Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Tree, 2000, 15: 238-243

[28]

Helbig M, Waddington JM, Alekseychik P, Amiro B, Aurela M, Barr AG, Black TA, Carey SK, Chen J, Chi J. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environ Res Lett, 2020, 15

[29]

Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 2010, 162: 505-513

[30]

IBGE (2012) Manual Técnico da Vegetação Brasileira. 2 ed. Rio de Janeiro 275 p.

[31]

Innangi Michele, Menta C, Pinto S, Danise T, d`Alessandro F, Fioretto A. Integrating chemical, biological and soil fauna variables during beech leaf litter decay: A partial least squares approach for a comprehensive view of the decomposition process. Appl Soil Ecol, 2018, 130: 69-78

[32]

Isaac SR, Nair MA. Biodegradation of leaf litters in the warm humid tropics of Kerala, India. Soil Biol Biochem, 2005, 37: 1656-1664

[33]

Landsberg JJ, Gower ST. Applications of physiological ecology to forest management, 1997 New York Academic Press

[34]

Lima RP, Fernandes MM, Fernandes MRM, Matricardi EAT. Aporte e decomposição da serapilheira na Caatinga no Sul do Piauí. Floram, 2015, 22: 42-49

[35]

Lucas-Borja Manuel E., Candel-Pérez David, García Morote Francisco A., Onkelinx Thierry, Tíscar Pedro A., Balandier Philippe. Pinus nigra Arn. ssp. salzmannii seedling recruitment is affected by stand basal area, shrub cover and climate interactions. Annals of Forest Science, 2016, 73(3): 649-656

[36]

Matos PS, Barreto-Garcia PAB, Scoriza RN. Effect of different forest management practices on the soil macrofauna in the arboreal Caatinga. Caatinga, 2019, 32: 1-10

[37]

Milliken W, Gasson P, Pareyn F, Sampaio EVSB, Lee M, Baracat A, Araújo EL, Cutler D. Impact of management regime and frequency on the survival and productivity of four native tree species used for fuelwood and charcoal in the Caatinga of northeast Brazil. Biomass Bioenergy, 2018, 116: 18-25

[38]

Monteiro MT, Gama-Rodrigues EF (2004). Carbono, nitrogênio e atividade da biomassa microbiana em diferentes estruturas de serapilheira de uma floresta natural. Rev Bras Ciênc Solo 28:819–826. https://doi.org/10.1590/S0100-06832004000500004

[39]

Musvoto C, Campbell BM, Kirchmann H. Decomposition and nutrient release from mango and miombo woodland litter in Zimbabwe. Soil Biol Biochem, 2000, 32: 1111-1119

[40]

Ostad-Ali-Askari K, Su R, Liu L. Water resources and climate change. Journal of Water and Climate Change, 2018, 9: 239-249

[41]

Ostad-Ali-Askari K, Ghorbanizadeh Kharazi H, Shayannejad M, Zareian MJ. Effect of Climate Change on Precipitation Patterns in an Arid Region Using GCM Models: Case Study of Isfahan-Borkhar Plain. Nat Hazard Rev, 2020, 21: 04020006

[42]

Pandey C. B., Singh J. S.. Influence of grazing and soil conditions on secondary savanna vegetation in India. Journal of Vegetation Science, 1991, 2(1): 95-102

[43]

Peng Q, Qi Y, Dong Y, He Y, Xiao S, Liu X, Sun L, Jia J, Guo S, Cao C. Decomposing litter and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China. J Arid Land, 2014, 6: 432-444

[44]

Pereira GHA, Pereira MG, dos Anjos LHC, de Amorim TA, Menezes CEG. Decomposição da serrapilheira, diversidade e funcionalidade de invertebrados do solo em um fragmento de floresta atlântica. Biosci J, 2013, 29: 1317-1327

[45]

Pereira JES, Barreto-Garcia PAB, Scoriza RN, Saggin OJ, Gomes VS. Arbuscular mycorrhizal fungi in soils of arboreal Caatinga submitted to forest management. Rev Bras Ciênc Agrár, 2018, 13: 1-6

[46]

Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil, 2019, 435: 187-200

[47]

Pinheiro EAR, Costa CAG, de Araújo JC. Effective root depth of the Caatinga biome. J Arid Environ, 2013, 89: 1-4

[48]

Pinto HCA, Barreto PAB, Gama-Rodrigues EF, Oliveira FGRB, Paula A, Amaral AR. Decomposição da serapilheira foliar de floresta nativa e plantios de Pterogyne nitens e Eucalyptus urophylla no Sudoeste da Bahia. Ciênc Florestal, 2016, 26: 1141-1153

[49]

R Development Core Team (2019) A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria.

[50]

Rede de manejo florestal da Caatinga (RMFC)/ Comitê Técnico Científico: Protocolo de medições de parcelas permanentes. Recife: Associação Plantas do Nordeste, 2005. 21 p.

[51]

Ritter E. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biol Biochem, 2005, 37: 1237-1247

[52]

Rossi CQ, Pereira MG, Giácomo SG, Betta M, Polidoro JC (2013) Decomposição e liberação de nutrientes da palhada de braquiária, sorgo e soja em áreas de plantio direto no Cerrado goiano. Semina: Ciênc Agrár 34:1523–1534. https://doi.org/10.5433/1679-0359.2013v34n4p1523.

[53]

Sahani U, Behera N (2001) Impact of deforestation on soil physicochemical characteristics, microbial biomass and microbial activity of tropical soil. Land Degrad Dev 12:93–105. https://doi.org/10.1002/ldr.429

[54]

Sangha KK, Jalota RK, Midmore DJ. Litter production, decomposition and nutrient release in cleared and uncleared pasture systems of central Queensland, Australia. J Trop Ecol, 2006, 22: 177-189

[55]

Santana JAS, Souto JS. Produção de serapilheira na Caatinga da região semiárida do Rio Grande do Norte, Brasil. IDESIA, 2011, 29: 87-94

[56]

Santos SR, Barreto-Garcia PAB, Scoriza RN. Fungos micorrízicos arbusculares e serapilheira como indicadores do efeito de borda em fragmento de Floresta Estacional. Ciênc Florestal, 2018, 28: 324-335

[57]

Silva HF, Barreto PAB, Sousa GTO, Azevedo GB, Gama-Rodrigues EF, Oliveira FGRB. Decomposição de serapilheira foliar em três sistemas florestais no Sudoeste da Bahia. Rev Bras Biociências, 2014, 12: 164-172

[58]

Silva UBT, Delgrado-Jaramillo M, Aguiar LMS, Bernard E. Species richness, geographic distribution, pressures, and threats to bats in the Caatinga drylands of Brazil. Biol Cons, 2018, 221: 312-322

[59]

Taiz L, Zeiger E (2017) Fisiologia vegetal. 6ª. ed. Porto Alegre: Artmed 719p.

[60]

Thomas RJ, Asakawa NM. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem, 1993, 23: 1351-1361

[61]

Trum F, Titeux H, Delvaux B (2010) Effects of manganese concentration on beech leaf litter decomposition: results from field and laboratory experiments. 19th World Congress of Soil Science, Soil Solutions for a Changing World, pp 40–43.

[62]

USDA-Natural Resources Conservation Service (2014) Keys to Soil Taxonomy, 12th ed.; NRCS: Washington, DC, USA.

[63]

Van Soest P J, Wine R H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. Journal of AOAC INTERNATIONAL, 1968, 51(4): 780-785

[64]

Vasconcelos HL, Laurance WF. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia, 2005, 144: 456-462

[65]

Veen GF, Fry EL, ten Hooven FC, Kardol P, Morriën E, De Long JR. The role of plant litter in driving plant-soil feedbacks. Front Environ Sci, 2019, 7: 168

[66]

Virgens Aline Pereira, Barreto-Garcia Patrícia Anjos Bittencourt, Paula Alessandro De, Carvalho Flávia Ferreira de, Aragão Mariana De Aquino, Monroe Paulo Henrique Marques. Biomassa de espécies florestais em área de caatinga arbórea. Pesquisa Florestal Brasileira, 2017, 37(92): 555-561

[67]

Xu X, Hirata E, Enoki T, Tokashiki Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol, 2004, 173: 161-170

[68]

Xu Y, Wan D, Xiao Z, Wu H, Jiang M. Spatio-temporal dynamics of seedling communities are determined by seed input and habitat filtering in a subtropical montane forest. Forest Ecol Manag, 2019, 449

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/