A preliminary study of fuel mixtures of industrial sludge, bottom ash, and municipal solid waste for co-firing in coal boilers

Dyah Marganingrum , Hidawati , Sonny Djatnika Sunda Djaja

Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (2) : 186 -198.

PDF
Energy, Ecology and Environment ›› 2022, Vol. 7 ›› Issue (2) : 186 -198. DOI: 10.1007/s40974-021-00229-y
Original Article

A preliminary study of fuel mixtures of industrial sludge, bottom ash, and municipal solid waste for co-firing in coal boilers

Author information +
History +
PDF

Abstract

Wastewater treatment in the textile factory produces sludge classified as toxic and hazardous waste, which is harmful if left untreated. This study assessed the potential of utilizing sludge from a textile factory in Bandung Regency, Indonesia, as a co-firing fuel in coal boiler furnaces employed in the factory. The study aimed to improve the performance of sludge to meet the required standards for fuel substitution. The analysis involved proximate, ultimate, and ash element tests with correlation of the results with calorific values. The sludge was mixed with coal bottom ash produced by the textile factory and biomass (local refuse-derived fuel) at different ratios. An environmental impact analysis was also carried out with the toxicity characteristic leaching procedure (TCLP) and air emission testing. The results showed that the sludge did not meet the fuel substitution requirements if it was used as a single material. However, the sludge could be used as a substitute for coal by mixing it with bottom ash and biomass; the optimum composition was a ratio of 20% sludge, 40% bottom ash, and 40% biomass by weight. TCLP and air emission test results showed that this mixture was safe for human health and the environment and met the fuel substitution requirements. This study provides a practical solution to the problem of reducing toxic and hazardous waste.

Keywords

Air emission / Biomass / Calorific value / Hazardous waste / Toxic waste

Cite this article

Download citation ▾
Dyah Marganingrum, Hidawati, Sonny Djatnika Sunda Djaja. A preliminary study of fuel mixtures of industrial sludge, bottom ash, and municipal solid waste for co-firing in coal boilers. Energy, Ecology and Environment, 2022, 7(2): 186-198 DOI:10.1007/s40974-021-00229-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali AA, Akilli H. Fuel characterization study and simulation of dewatered domestic wastewater sludge gasification using ASPEN plus. Acad Perspect Procedia, 2019, 2(3): 954-963

[2]

Anggoro B, Aprilian A, Halimi B (2017) Potency of waste to energy-Bandung city case study. In: 2017 International conference on high voltage engineering and power systems (ICHVEPS), pp 135–139. https://doi.org/10.1109/ICHVEPS.2017.8225929

[3]

Anwar TB, Behrose B, Ahmed S. Utilization of textile sludge and public health risk assessment in Bangladesh. Sustain Environ Res, 2018, 28(5): 228-233

[4]

Arbunowo AA, Purwanto PP, Budihardjo MA. Waste to product: Bisolum-bricks, incorporation of WWTP sludge of textile industry into bricks for wall pairs. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 2019, 10(2): 29-35

[5]

Awere E, Bonoli A, Obeng PA. Solids-liquid separation and solar drying of palm oil mill wastewater sludge: potential for sludge reuse. Case Stud Chem Environ Eng, 2020, 2(100057): 1-6

[6]

Chang YM, Hung CY, Chen JH, Chang CT, Chen CH. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. J Hazard Mater, 2009, 161(2–3): 1436-1443

[7]

Chuah LF, Aziz ARA, Yusup S, Bokhari A, Klemeš JJ, Abdullah MZ. Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm olein using hydrodynamic cavitation. Clean Technol Environ Policy, 2015, 17(8): 2229-2241

[8]

Chuah LF, Yusup S, Aziz ARA, Klemeš JJ, Bokhari A, Abdullah MZ. Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Technol Environ Policy, 2016, 18(2): 473-482

[9]

Chuah LF, Yusup S, Aziz ARA, Bokhari A, Abdullah MZ. Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. J Clean Prod, 2016, 112(5): 4505-4514

[10]

Cullis CF, Mulcahy MFR. The kinetics of combustion of gaseous sulphur compounds. Combust Flame, 1972, 18(2): 225-292

[11]

Damayanti R. Abu batubara dan pemanfaatannya: Tinjauan teknis karakteristik secara kimia dan toksikologinya. Jurnal Teknologi Mineral Dan Batubara, 2018, 14(3): 213-231

[12]

Das S, Lee SH, Kumar P, Kim KH, Lee SS, Bhattacharya SS. Solid waste management: scope and the challenge of sustainability. J Clean Prod, 2019, 228: 658-678

[13]

Eskak E, Salma IR. Kajian pemanfaatan limbah perkebunan untuk substitusi bahan pewarna batik. Jurnal Industri Hasil Perkebunan, 2020, 15(2): 27-37

[14]

Ghasri-Khouzani M, Meratian M, Panjepour M. Effect of mechanical activation on structure and thermal decomposition of aluminum sulfate. J Alloy Compd, 2009, 472(1–2): 535-539

[15]

Hannon J, Zaman A. Exploring the phenomenon of zero waste and future cities. Urban Sci, 2018, 2(90): 1-26

[16]

Haraguchi M, Siddiqi A, Narayanamurti V. Stochastic cost-benefit analysis of urban waste-to-energy systems. J Clean Prod, 2019, 224: 751-765

[17]

Haryono H, Faizal DM, Liamita NC, Rostika A. Pengolahan limbah zat warna tekstil terdispersi dengan metode elektroflotasi. EduChemia (jurnal Kimia Dan Pendidikan), 2018, 3(1): 94-105

[18]

Hussein BA, Tsegaye AA, Abdulahi A. Assessment of the environmental and health impacts of disposal plastics in Gode town, Somali regional state, Eastern Ethiopia. J Mater Environ Sci, 2021, 12(3): 455-471

[19]

Igoni AH, Harry SK. Design models for anaerobic batch digesters producing biogas from municipal solid waste. Energy Environ Eng, 2017, 5(2): 37-53

[20]

James AK, Thring RW, Helle S, Ghuman HS. Ash management review-applications of biomass bottom ash. Energies, 2012, 5(10): 3856-3873

[21]

Jouhara H, Czajczyńska D, Ghazal H, Krzyżyńska R, Anguilano L, Reynolds AJ, Spencer N. Municipal waste management systems for domestic use. Energy, 2017, 139: 485-506

[22]

Kim KH, Seo YC, Nam H, Joung HT, You JC, Kim DJ, Seo YC. Characteristics of major dioxin/furan congeners in melted slag of ash from municipal solid waste incinerators. Microchem J, 2005, 80(2): 171-181

[23]

Kumar M, Kumar S, Singh S. Waste management by waste to energy initiatives in India. Int J Sustain Energy Environ Res, 2021, 10(2): 58-68 in progress)

[24]

Kurniawan T, Hakiki R, Sidjabat FM. Wastewater sludge as an alternative energy resource: a review. J Environ Eng Waste Manag, 2018, 3(1): 1-12

[25]

Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag, 2015, 37: 26-44

[26]

Maalouf A, El-Fadel M. Towards improving emissions accounting methods in waste management: a proposed framework. J Clean Prod, 2019, 206: 197-210

[27]

Mahatmanti W, Kusumastuti E, Rengga W. Membran padat kitosan-silika-PEG sebagai membran pemisah ion logam bivalen dan rhodamin B pada limbah cair industri tekstil. JC-T (journal Cis-Trans) Jurnal Kimia Dan Terapannya, 2019, 3(2): 12-17

[28]

Mahyudin RP. Kajian permasalahan pengelolaan sampah dan dampak lingkungan di TPA (Tempat Pemrosesan Akhir). Jukung Jurnal Teknik Lingkungan, 2017, 3(1): 66-74

[29]

Marafon AC, Amaral AFC, Lemos EEP. Characterization of bamboo species and other biomasses with potential for thermal energy generation. Pesquisa Agropecuária Tropical, 2019, 49: 1-5

[30]

Marganingrum D, Estiaty LM. Value increasing of reject coal with biomass adding as bio-coal briquette. Indones J Urban Environ Technol, 2020, 3(2): 123-135

[31]

Marganingrum D, Estiaty LM, Irawan C, Hidawati (2020) The biomass coal fermented (BCF) briquette as an alternative fuel. In: MSCEIS 2019 conference proceeding 1:811–819. https://doi.org/10.4108/eai.12-10-2019.2296375

[32]

McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Eng J, 2002, 86(3): 343-368

[33]

Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Alaba PA. A review of electrocoagulation technology for the treatment of textile wastewater. Rev Chem Eng, 2017, 33(3): 263-292

[34]

Nayono SE (2009) Anaerobic digestion of organic solid waste for energy production. Thesis, Karlsruhe University

[35]

Ni Y, Zhang H, Fan S, Zhang X, Zhang Q, Chen J. Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere, 2009, 75(9): 1153-1158

[36]

Oladeji JT. Theoretical aspects of biomass briquetting: a review study. J Energy Technol Policy, 2015, 5(3): 72-82

[37]

Olatunji OO, Akinlabi S, Madushele N, Adedeji PA. Estimation of the elemental composition of biomass using hybrid adaptive neuro-fuzzy inference system. Bioenergy Res, 2019, 12(3): 642-652

[38]

Özyuğuran A, Yaman S, Küçükbayrak S. Prediction of calorific value of biomass based on elemental analysis. Int Adv Res Eng J, 2018, 02(03): 254-260

[39]

Pandapotan CD, Mukhlis M, Marbun P. Pemanfaatan limbah lumpur padat (sludge) pabrik pengolahan kelapa sawit sebagai alternatif penyediaan unsur hara di tanah ultisol. Jurnal Agroekoteknologi Universitas Sumatera Utara, 2017, 5(2): 271-276

[40]

Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005, 84(5): 487-494

[41]

Pasek AD, Gultom KW, Suwono A. Feasibility of recovering energy from municipal solid waste to generate electricity. J Eng Technol Sci, 2013, 45(3): 241-256

[42]

Peprah K, Amoah ST, Thomas G, Achana W. Assessing ‘3Rs’ model in relation to municipal solid waste management in Wa, Ghana. World Environ, 2015, 5(3): 112-120

[43]

Popli K, Sudibya GL, Kim S. A review of solid waste management using system dynamics modeling. J Environ Sci Int, 2017, 26(10): 1185-1200

[44]

Prabawanti BE. Application of green marketing in the use of coffee waste as a business creative industry based on social enterprise. Jurnal Manajemen Dan Organisasi, 2021, 11(3): 136-142

[45]

Putri AP, Sukandar S. Studi pemanfaatan limbah B3 sludge produced water sebagai bahan baku refuse derived fuel (Rdf). Jurnal Tehnik Lingkungan, 2013, 19(1): 1-10

[46]

Rathna R, Varjani S, Nakkeeran E. Recent developments and prospects of dioxins and furans remediation. J Environ Manag, 2018, 223: 797-806

[47]

Ribeiro AP, Dalmolin S. Biomass energy as a possibility for innovative agriculture initiatives. Energy Ecol Environ, 2020

[48]

Rugatiri J (2021) Assessing solid waste management strategy in Higher Education Institutions of Indonesia: a case study of IPB. Thesis, IPB University

[49]

Santos RE, Santos IFS, Barros RM Generating electrical energy through urban solid waste in Brazil: an economic and energy comparative analysis. J Environ Manag, 2019, 231: 198-206

[50]

Sarbassov Y, Duan L, Manovic V, Anthony EJ. Sulfur trioxide formation/emissions in coal-fired air- and oxy-fuel combustion processes: a review. Greenhouse Gases Sci Technol, 2018, 8(3): 402-428

[51]

Siddiqi MM, Naseer MN, Wahab YA Potential in urban Pakistan. Process, 2019, 7(848): 1-13

[52]

Skaggs RL, Coleman AM, Seiple TE, Milbrandt AR. Waste-to-Energy biofuel production potential for selected feedstocks in the conterminous United States. Renew Sustain Energy Rev, 2018, 82: 2640-2651

[53]

Somneuk P (2020) Enabling circular economy in local solid waste management the case of Muang Kalasin Municipality, Thailand. Thesis, Uppsala University, Villavägen 16, SE- 752 36 Uppsala, Sweden.

[54]

Srivastava RK, Miller CA, Erickson C, Jambhekar R. Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manag Assoc, 2004, 54(6): 750-762

[55]

Suhendra E, Kardena E (2013) Potensi keberadaan polutan kloroanilin di Sungai Citarum akibat biotranformasi pewarna azo dari air limbah tekstil. Prosiding Seminar Nasional Pengelolaan Sumberdaya Alam dan Lingkungan:475–481.

[56]

Tagawa H. Thermal decomposition temperatures of metal sulfates. Thermochim Acta, 1984, 80(1): 23-33

[57]

Tompkins FC (1976) Decomposition reactions. In: Treatise on solid state chemistry. Springer, US, pp 193–231. https://doi.org/10.1007/978-1-4684-8082-5_4

[58]

Toscano G, Pedretti EF. Calori value determination of solid biomass fuel by simplified method. J Agric Eng, 2009, 40(3): 1-6

[59]

Utomo HD, Yu LS, Yi DCZ, Jun OJ. Recycling solid waste and bioenergy generation in MFC dual-chamber model. Energy Procedia, 2017, 143: 424-429

[60]

Valerie, Wijaya JC, Pinontoan R. Pemanfaatan mikroba yang berpotensi sebagai agen bioremediasi limbah pewarna tekstil. FaST-Jurnal Sains Dan Teknologi, 2018, 2(1): 32-47

[61]

Wirahadi M. Elemen interior berbahan baku pengolahan sampah styrofoam dan sampah kulit jeruk. Jurnal INTRA, 2016, 5(2): 144-153

[62]

Xu S, He H, Luo L (2016) Status and prospects of municipal solid waste to energy technologies in China. In: Environmental footprints and eco-design of products and processes, pp. 31–54. https://doi.org/10.1007/978-981-10-0150-5_2

[63]

Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag, 2004, 45(5): 651-671

[64]

Yusbindar, Fatimah E, Suhendrayatna Aspek teknis operasional yang mempengaruhi timbulan sampah di kecamatan. Jurnal Arsip Rekayasa Sipil Dan Perencanaan, 2020, 3(2): 118-127

[65]

Zannikos F, Kalligeros S, Anastopoulos G, Lois E. Converting biomass and waste plastic to solid fuel briquettes. J Renew Energy, 2013, 2013: 1-9

[66]

Zhao Y, Ma Q, Liu Y, He H. Influence of sulfur in fuel on the properties of diffusion flame soot. Atmos Environ, 2016, 142: 383-392

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/