Characterization and assessment of Jatropha curcas and Moringa oleifera husk and their potential use in gasification

Marcel Pfeil , Indira Tobío-Pérez , Dominik Denfeld , Yosvany Díaz , Sven Pohl , Ramón Piloto-Rodríguez

Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (2) : 170 -182.

PDF
Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (2) : 170 -182. DOI: 10.1007/s40974-020-00179-x
Original Article

Characterization and assessment of Jatropha curcas and Moringa oleifera husk and their potential use in gasification

Author information +
History +
PDF

Abstract

Tropical plants Jatropha curcas and Moringa oleifera produce non-edible oil seeds which can be considered as feedstock to produce biodiesel. Along the processing steps, several by-products are produced. This work is focused on the thermochemical use of Jatropha and Moringa husk in order to increase the overall value chain of their utilization. Comprehensive characterization studies and their assessment for calorific utilization are quite limited in the literature. The scope of the paper is a comprehensive fuel characterization based on the results, with focus on thermochemical utilization pathways. Proximate analysis shows that Jatropha and Moringa husk have low moisture content (9.19 and 6.25%, respectively) and ash (< 5%) and high content of volatile components. Higher values of C, N and S for M. oleifera in comparison with J. curcas husk were obtained. M. oleifera seed husk shows the highest LHV (20.83 MJ kg−1). The ash melting analysis of husk shows melting points above 1500 °C. By simulation of the gasification process, the LHV, the amount of gas producer and energy output are estimated. The energy produced by simulation of gasification demonstrates that it is enough to cover the energy needs involved in a biodiesel facility with capacity of 800 L of biodiesel per day.

Keywords

Moringa oleifera / Jatropha curcas / Husk / Gasification / Ash melting behavior

Cite this article

Download citation ▾
Marcel Pfeil, Indira Tobío-Pérez, Dominik Denfeld, Yosvany Díaz, Sven Pohl, Ramón Piloto-Rodríguez. Characterization and assessment of Jatropha curcas and Moringa oleifera husk and their potential use in gasification. Energy, Ecology and Environment, 2021, 6(2): 170-182 DOI:10.1007/s40974-020-00179-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbdulKhalil HPS, SriApriliaa NA, Bhat AH, Jawaid M, Paridah MT, Rudi D. A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sust Energ Rev, 2013, 22: 667-685

[2]

Akhtar A, Krepl V, Ivanova T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels, 2018, 32: 7294-7318

[3]

Barua PK. Biodiesel from Seeds of Jatropha Found in Assam, India. Int J Energy Inf Commun, 2011, 2: 53-65

[4]

Bernhardt D, Pohl M, Gebauer K, Unz S, Müller M, Beckmann M. Biogene Reststoffe zur Nutzung als holzpelletäquivalente Brennstoffe. Erneuerbare Energien, 2011, 6: 57-70

[5]

Brunerová A, Malaťák J, Müller M, Valášek P, Roubík H. Tropical waste biomass potential for solid biofuels production. Agron. Res., 2017, 15: 359-368

[6]

Clark J, Luque R. Handbook of Biofuels Production: Processes and Technologies, 2010 Michigan Woodhead Publishing

[7]

Deshmukh SB, Patil DV. Properties of Jatropha curcas oil and diesel blend as a fuel for C.I. engines. Int J Eng Manag Res, 2017, 7: 163-168

[8]

Díaz-Domínguez Y, Tabio D, Rondón M, Fernández E, Muñoz S, Ameneiros JM, Piloto- Rodríguez R. Extraction and characterization of Moringa oleifera Lam var. Supergenius seed oil from Cuba. Revista CNIC, Ciencias Químicas, 2017, 48: 17-26

[9]

Doherty W, Reynolds A, Kennedy D. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenerg, 2009, 33: 1158-1167

[10]

García R, Pizarro C, Lavín AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Bioresour Technol, 2012, 103: 249-258

[11]

Ghosh A, Chikara J, Chaudhary DR. Diminution of economic yield as affected by pruning and chemical manipulation of Jatropha curcas L. Biomass Bioenerg, 2011, 35: 1021-1029

[12]

Giwa A, Adeyemi I, Dindi A, García-Baños C, Lopresto CG, Curcio S, Chakraborty S. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew Sust Energ Rev, 2018, 88: 239-257

[13]

Hsu TC, Chang CC, Yuan MH, Chang CY Upgrading of Jatropha-seed residue after mechanical extraction of oil via torrefaction. Energy, 2018, 142: 773-781

[14]

Iqbal Y, Lewandowski I. Biomass composition and ash melting behaviour of selected miscanthus genotypes in Southern Germany. Fuel, 2016, 180: 606-612

[15]

Jingura RM, Musademba D, Rutendo M. An evaluation of utility of Jatropha curcas L. as a source of multiple energy carriers. Int J Eng Sci Technol, 2010, 58: 77-82

[16]

Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P. A review on gasification of biomass. Renew Sust Energ Rev, 2009, 13: 179-186

[17]

Kratzeisen M, Müller J. Suitability of Jatropha seed shells as fuel for small-scale combustion units. Renew Energy, 2013, 51: 46-52

[18]

Kumar A, Tewari SK. Origin, distribution, ethnobotany and pharmacology of Jatropha curcas. Res J Med Plants, 2015, 9: 48-59

[19]

Liu L, Huang Y, Liu C. Prediction of rice husk gasification on fluidized bed gasifier based on Aspen Plus. Bioresources, 2016, 11: 2744-2755

[20]

Maiti S, Bapat P, Das P, Ghosh PK. Feasibility study of jatropha shell gasification for captive power generation in biodiesel production process from whole dry fruits. Fuel, 2014, 121: 126-132

[21]

Martin C, Moure A, Martin G, Carrillo E, Dominguez H, Parajo JC. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenerg, 2010, 34: 533-538

[22]

Melissari B. Ash related problems with high alkalii biomass and its mitigation-Experimental evaluation. Memoria Investigaciones en Ingeniería, 2014, 12: 31-44

[23]

Mlonka-Mędralaa A, Magdziarza A, Gajeka M, Nowińskab K, Nowaka W. Alkali metals association in biomass and their impact on ash melting behaviour. Fuel, 2020, 261: 116421

[24]

Molino A, Chianese S, Musmarra D. Biomass gasification technology: the state of the art overview. J. Energy Chem., 2016, 25: 10-25

[25]

Navarro-Pineda FS, Baz-Rodríguez SA, Handler R, Sacramento-Rivero JC. Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renew Sust Energ Rev, 2016, 54: 247-269

[26]

Niu M, Huang Y, Jin B, Wang X. Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus. Ind Eng Chem Res, 2013, 52: 14768-14775

[27]

Nouman W, Basra SMA, Siddiqui MT, Yasmeen A, Gull T, Alcayde MACA. Potential of Moringa oleifera L. as livestock fodder crop: a review. Turk J Agric For, 2014, 38: 1-14

[28]

Onabanjo T, Patchigolla K, Wagland ST, Fidalgo B Energy recovery from human faeces via gasification: a thermodynamic equilibrium modelling approach. Energ Convers Manage, 2016, 18: 364-376

[29]

Pereira F, Silva A, Galvão C, Lima V, Montenegro L, Lima-Filho N. Moringa oleifera as sustainable source for energetic biomass. Int J Chem, 2015, 7: 177-185

[30]

Pfeil M, Konradi ST, Pohl S. Thermochemical biomass conversion for decentralized power generation with the inverse Brayton cycle. Chem Eng Technol, 2017

[31]

Pfeil M, Piloto-Rodríguez R, Díaz Y, Sanchez-Borroto Y, Melo-Espinosa EA, Denfeld D, Pohl S. Data on the thermochemical potential of six Cuban biomasses as bioenergy sources. Data in Brief, 2020

[32]

Piloto-Rodriguez R, Goyos L, Alfonso M, Duarte M Characterization of Jatropha curcas oils and their derived fatty acid ethyl esters obtained from two different plantations in Cuba. Biomass Bioenerg, 2011, 35: 4092-4098

[33]

Prasad L, Subbarao PMV, Subrahmanyam JP. Pyrolysis and gasification characteristics of Pongamia residue (de-oiled cake) using thermogravimetry and downdraft gasifier. Appl Therm Eng, 2014, 63: 379-386

[34]

Prins MJ, Ptasinski KJ, Janssen F. More efficient biomass gasification via torrefaction. Energy, 2006, 31: 3458-3470

[35]

Ptasinski KJ. Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuel Bioprod Bior, 2008, 2: 239-253

[36]

Puig-Arnavat M, Carles J, Coronas A. Review and analysis of biomass gasification models. Renew Sust Energ Rev, 2010, 14: 2841-2851

[37]

Ramzan N, Ashraf A, Naveed S, Malik A. Simulation of hybrid biomass gasification using Aspen plus: a comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenerg, 2011, 35: 3962-3969

[38]

Rashid U, Anwar F, Jamil A, Bhatti HN. Jatropha curcas seed oil as a viable source for biodiesel. Pak J Bot, 2010, 42: 575-582

[39]

Rodríguez DA, Zuleta A, Olivares A, Torres C, Francisco F. Análisis y diseño de un sistema de gasificación de biomasa, 2010 México XVI Congreso Internacional Anual de la SOMIM

[40]

Rupesh S, Muraleedharan C, Arun P. ASPEN plus modelling of air-steam gasification of biomass with sorbent enabled CO2 capture. Resour Effic Technol, 2016, 2: 94-103

[41]

Safarian S, Unnpórsson R, Richter C. A review of biomass gasification modelling. Renew Sust Energ Rev, 2019, 110: 378-391

[42]

Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind Crop Prod, 2014, 61: 49-61

[43]

Shehzad A, Bashir M, Sethupathi S. System analysis for synthesis gas (syngas) production in Pakistan from municipal solid waste gasification using a circulating fluidized bed gasifier. Renew Sust Energ Rev, 2016, 60: 1302-1311

[44]

Singh RN, Vyas DK, Srivastava NSL, Narra M. SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energy, 2008, 33: 1868-1873

[45]

Suwatthikul A, Limprachaya S, Kittisupakorn P, Mujtaba IM. Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition. Energies, 2017, 10: 1-15

[46]

Thapa S, Indrawan N, Bhoi PR. An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environ Technol Inno, 2018, 9: 210-219

[47]

Vyas DK, Singh RN. Feasibility study of Jatropha seed husk as an open core gasifier feedstock. Renew Energy, 2007, 32: 512-517

[48]

You S, Sik Y, Tsang D, Kwon E, Wang C. Towards practical application of gasification: a critical review from syngas and biochar perspectives. Crit Rev Environ Sci Tech, 2018

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/