Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance

Narsimha Pandi , Shirish H. Sonawane , Anand Kishore Kola , Ujwal Kishor Zore , Pramod H. Borse , Swapnil B. Ambade , Muthupandian Ashokkumar

Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (1) : 13 -25.

PDF
Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (1) : 13 -25. DOI: 10.1007/s40974-020-00174-2
Original Article

Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance

Author information +
History +
PDF

Abstract

In this study, halloysite nanotubes polyaniline (HNT-PANI) nanocomposite was synthesized by using an ultrasound-assisted method. Because of high conductivity, ease of synthesis, low cost, nanosize tubular structure and improved structural/electrochemical properties, HNT-PANI had been used for the electrode fabrication of a supercapacitor. The dispersion of halloysite nanotubes in polyaniline was prepared by following an ultrasound approach. The structural and morphological studies of the HNT-PANI nanocomposite were investigated by X-ray diffraction, Fourier Transform Infrared Spectroscopy, Raman and transmission electron microscopy. The length of the halloysite nanotubes varied from 200 to 1000 nm and the composite nanoparticles possessed tubular hallow shaped structure. The electrochemical performance of the HNT-PANI nanocomposite electrode was analyzed after performing potentiodynamic and electrochemical impedance spectroscopic studies. The crystallite size of HNT-PANI composite was calculated and the average size ranged from 30 to 100 nm. HNT-PANI composite electrode exhibited the highest specific capacitance of 282.5 F/g at a current density of 0.5 A/g.

Keywords

Halloysite nanotubes / Polyaniline / Ultrasound / Sonochemical synthesis / Supercapacitor / Electrochemical properties

Cite this article

Download citation ▾
Narsimha Pandi, Shirish H. Sonawane, Anand Kishore Kola, Ujwal Kishor Zore, Pramod H. Borse, Swapnil B. Ambade, Muthupandian Ashokkumar. Halloysite nanotubes-based supercapacitor: preparation using sonochemical approach and its electrochemical performance. Energy, Ecology and Environment, 2021, 6(1): 13-25 DOI:10.1007/s40974-020-00174-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antill SJ. Halloysite: a low-cost alternative nanotube. Aust J Chem, 2003, 56(7): 723-724

[2]

Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S. Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C, 2014, 118(27): 15095-15101

[3]

Asim N, Radiman S, Yarmo MA. Preparation and characterization of core-shell polyaniline/V2O5 nanocomposite via microemulsion method. Mater Lett, 2008, 62: 1044-1047

[4]

Aydinli A, Recep Y, Husnu E. Vertically aligned carbon nanotube polyaniline nanocomposite supercapacitor electrodes. Int J Hydrog Energy, 2018, 43: 18617-18625

[5]

Babu A, Ankan D, Ruey-an D. Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim Acta, 2017, 245: 912-923

[6]

Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 1951, 73: 373-380

[7]

Berthier P. Analyse the halloysite. Annales de chimie et de physique, 1826, 32: 331-334

[8]

Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Prog Polym Sci, 2009, 34(8): 783-810

[9]

Chen Z, Zhang Z, Du A, Zhang Y, Men M, Li G, Cui G. Fast magnesiation kinetics in α-Ag2S nanostructures enabled by an in situ generated silver matrix. Chem Commun, 2019, 55(30): 4431-4434

[10]

Chuang FY, Yang SM. Cerium dioxide/polyaniline core-shell nanocomposites. J Colloid Interface Sci, 2008, 320: 194-201

[11]

Conway BE. Electrochemical supercapacitors scientific fundamentals and technological applications, 1999 New York Springer

[12]

Dai T, Yujie J. Supramolecular hydrogels of polyaniline-poly (styrene sulfonate) prepared in concentrated solutions. Polymer, 2011, 52: 2550-2558

[13]

Diarmid MAG. Synthetic metals: A novel role for organic polymers (Nobel lecture). Angew Chem Int Ed, 2001, 40(14): 2581-2590

[14]

Diaz AF, Logan JA. Electroactive polyaniline films. J Electroanal Chem Interfacial Electrochem, 1980, 111(1): 111-114

[15]

Dong Y, Marshall J, Haroosh HJ, Mohammad S, Liu D, Qi X, Lau K. Composites: part A polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Compos A, 2015, 76: 28-36

[16]

Du C, Zhou X, Liu Z, Mai Y. Multi-holed clay nanotubes and their modification with a polyaniline nanolayer. J Mater Sci, 2011, 46: 446-450

[17]

Fan P, Wang S, Liu H, Liao L, Lv G, Mei L. Polyaniline nanotube synthesized from natural tubular halloysite template as high performance pseudocapacitive electrode. Electrochim Acta, 2020, 331: 135259

[18]

Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F. Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources, 2006, 153(2): 413-418

[19]

Frost RL, Shurvellt HF. Raman microprobe spectroscopy of halloysite. Clays Clay Miner, 1997, 45: 68-72

[20]

Gao H, Xiaohong W, Ganghu W, Chen H. An urchinlike MgCo2O4@PPy core-shell composite grown on Ni Foam for a high-performance all solid-state asymmetric supercapacitor. Nanoscale, 2018, 10: 10190-10202

[21]

Gnana BSR, Ramprasad RNR, Asiri AM, Wu JJ, Anandan S. Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochim Acta, 2015, 156: 127-137

[22]

Goda ES, Gab-Allah MA, Singu BS, Yoon KR. Halloysite nanotubes based electrochemical sensors: a review. Microchem J, 2019, 147: 1083-1096

[23]

Guo S, Zhao K, Feng Z, Hou Y, Li H, Zhao J, Song H. High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci, 2018, 455: 599-607

[24]

Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met, 2002, 125: 23-42

[25]

Htut KZ, Kim M, Lee E, Lee G, Baeck SH, Shim SE. Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors. Synth Met, 2017, 227: 61-70

[26]

Hu F, Xu J, Zhang S, Jiang J, Yan B, Gu Y, Chen S. Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties. J Mater Chem C, 2018, 6(21): 5707-5715

[27]

Huang C, Chen H. Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Appl Surf Sci, 2019, 505: 144589

[28]

Huang C, Yinhui D. PVP-assisted growth of Ni-Co oxide on N-doped reduced graphene oxide with enhanced pseudocapacitive behavior. Chem Eng J, 2019, 378: 122202

[29]

Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y. Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A, 2014, 2: 16516-16522

[30]

Huang H, Yao J, Chen H, Zeng X, Chen C, She X, Li L. Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci, 2016, 51: 4047-4054

[31]

Hussein AK. Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sustain Energy Rev, 2015, 42: 460-476

[32]

Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A. The effect of halloysite nanotubes as a novel nanofiller on curing behaviour, mechanical and microstructural properties of ethylene propylene diene monomer (EPDM) nanocomposites. Polym Plast Technol Eng, 2009, 48(3): 313-323

[33]

Izwan RS, Sharif NF, Muhamad II. Polyaniline-coated halloysite nanotubes: effect of para-hydroxybenzene sulfonic acid doping. Compos Interfaces, 2014, 21: 715-722

[34]

Jamal R, Shao W, Xu F, Abdiryim T. Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. Journal of Materials Research, 2013, 28(6): 832

[35]

Jo Y, Cho WJ, Inamdar AI, Kim BC, Kim J, Kim H, Im H, Yu KH, Kim DY. Electrochemical supercapacitor properties of polyaniline thin films in organic salt added electrolytes. J Appl Polym Sci, 2014, 131(11): 40306

[36]

Kitani A, Kaya M, Tsujioka SI, Sasaki K. Flexible polyaniline. J Polym Sci Part A Polym Chem, 1988, 26(6): 1531-1539

[37]

Kumar GV, Krishnamoorthy K, Radhakrishnan S, Kim NJ, Kim SJ. In-situ chemical oxidative polymerization of aniline monomer in the presence of cobalt molybdate for supercapacitor applications. J Ind Eng Chem, 2016, 36: 163-168

[38]

Levis SR, Deasy PB. Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm, 2002, 243: 125-134

[39]

Li X, Zhong Q, Zhang X, Li T, Huang J. In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance. Thin Solid Films, 2015, 584: 348-352

[40]

Li K, Liu X, Chen S, Pan W, Zhang J. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J Energy Chem, 2019, 32: 166-173

[41]

Lin LY, Yeh MH, Tsai JT, Huang YH, Sun CL, Ho KC. A novel core–shell multi-walled carbon nanotube@ graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A, 2013, 1(37): 11237-11245

[42]

Liu C, Li F, Ma LP, Cheng HM. Advanced materials for energy storage. Adv Mater, 2010, 22: 28-62

[43]

Liu WF, Yang YZ, Liu XG, Xu BS. Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode. New Carbon Mater, 2016, 31(6): 594-599

[44]

Liu Y, Xu N, Chen WC, Wang X, Sun C, Su Z. High cycling stable supercapacitor through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Trans, 2018, 47(38): 13472-13478

[45]

Luo X, Killard AJ, Morrin A, Smyth MR. In situ electropolymerised silica-polyaniline core-shell structures: electrode modification and enzyme biosensor enhancement. Electrochim Acta, 2007, 52: 1865-1870

[46]

Ma Q, Song H, Zhuang Q, Liu J, Zhang Z, Mao C, Chen K. Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@ C nanorods as high rate anodes for lithium ion batteries. Chem Eng J, 2018, 338: 726-733

[47]

Manivel P, Ramakrishnan S, Kothurkar NK, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Mater Res Bull, 2013, 48(2): 640-645

[48]

Mi H, Zhang X, An S, Ye X, Yang S. Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem Commun, 2007, 9: 2859-2862

[49]

Miao YE, Fan W, Chen D, Liu T. High-performance supercapacitors based on hollow polyaniline nano fibers by electrospinning. ACS Appl Mater Interfaces, 2013, 5: 4423-4428

[50]

Mostafaei A, Zolriasatein A. Progress in natural science: materials international synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater Int, 2012, 22(4): 273-280

[51]

Murali RS, Padaki M, Matsuura T, Abdullah MS, Ismail AF. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep Purif Technol, 2014, 132: 187-194

[52]

Naarmann H. Polymers, electrically conducting. Ullmann’s Encyclopedia of Industrial Chemistry, 2012, 29: 295-314

[53]

Ouyang J, Mu D, Zhang Y, Yang H. Mineralogy and physico-chemical data of two newly discovered halloysite in China and their contrasts with some typical minerals. Minerals, 2018, 8(3): 108

[54]

Pandi N, Sonawane SH, Gumfekar SP, Kola AK, Borse PH, Ambade SB, Ashokkumar M. Electrochemical performance of Starch-polyaniline nanocomposites synthesized by sonochemical process intensification. J Renew Mater, 2019, 7(12): 1279-1293

[55]

Paul EW, Ricco AJ, Wrighton MS. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-basedmicroelectronic devices. J Phys Chem, 1985, 89(8): 1441-1447

[56]

Rao CN, Cheetham AK. Science and technology of nanomaterials: current status and future prospects. J Mater Chem, 2001, 11(12): 2887-2894

[57]

Rohom A, Londhe P, Mahapatra SK, Kulkarni SK, Chaure NB. Electropolymerization of polyaniline thin films. High Perform Polym, 2014, 26: 641-646

[58]

Sarangapan S, Tilak BV, Chen CP. Review materials for electrochemical capacitors of theoretical and experimental consfraints. J Electrochem Soc, 1996, 143(11): 3791-3799

[59]

Sen P, De A, Chowdhury AD, Bandyopadhyay SK, Agnihotri N, Mukherjee M. Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim Acta, 2013, 108: 265-273

[60]

Sheng Q, Zhang D, Wu Q, Zheng J, Tang H. Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing. Anal Methods, 2015, 7(16): 6896-6903

[61]

Sheppard CM, Mackenzie KJD. Silicothermal synthesis and Densi ® cation of X-Sialon in the presence of metal oxide additives. J Eur Ceram Soc, 1999, 19: 535-541

[62]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845-854

[63]

Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57(4): 603-619

[64]

Soheilmoghaddam M, Wahit MU. Development of regenerated cellulose/halloysite nanotube bionanocomposite films. Int J Biol Macromol, 2013, 58: 133-139

[65]

Trchová M, Morávková Z, Bláha M, Stejskal J. Electrochimica acta Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta, 2014, 122: 28-38

[66]

Ullah R, Bilal S, Ali K. Synthesis and characterization of polyaniline doped with Cu II chloride by inverse emulsion polymerization. Synth Met, 2014, 198: 113-117

[67]

Viswanathan A, Shetty AN. Facile in-situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application. Electrochim Acta, 2017, 257: 483-493

[68]

Wang F, Zhang X, Ma Y, Yang W. Synthesis of HNTs @ PEDOT composites via in situ chemical oxidative polymerization and their application in electrode materials. Appl Surf Sci, 2018, 427: 1038-1045

[69]

Wilson IR. Kaolin and halloysite deposits of China. Clay Miner, 2004, 39: 1-15

[70]

Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 2014, 4: 1300816

[71]

Yang C, Liu P, Zhao Y. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta, 2010, 55: 6857-6864

[72]

Yang Y, Xi Y, Li J, Wei G, Klyui NI, Han W. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res Lett, 2017, 12(1): 1-9

[73]

Yuan P, Southon PD, Liu Z, Green ME, Hook JM, Antill SJ, Kepert CJ. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C, 2008, 112(40): 15742-15751

[74]

Zhang WL, Hyoung JC. Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci, 2012, 290: 1743-1748

[75]

Zhang W, Mu B, Wang A. Halloysite nanotubes template-induced fabrication of carbon/manganese dioxide hybrid nanotubes for supercapacitors. Ionics, 2015, 21: 2329-2336

[76]

Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Dong S. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv Energy Mater, 2017, 7(11): 1602055

[77]

Zhang Z, Dong S, Cui Z, Du A, Li G, Cui G. Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview. Small Methods, 2018, 2(10): 1800020

[78]

Zhao Y, Quan X, Li C. Facile preparation of etched halloysite @ polyaniline nanorods and their enhanced electrochemical capacitance performance. Electrochim Acta, 2019, 321: 134715

[79]

Zheng H, Cheng H, Lu Z, Ye Y, Chen J. Intercalated polyaniline/halloysite nanocomposites by a solvent-free mechanochemical method. NANO Brief Rep Rev, 2016, 11: 1-10

[80]

Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D. Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew Chem Int Ed, 2005, 44: 7932-7935

[81]

Zhou T, Li C, Jin H, Lian Y, Han W. Effective adsorption/reduction of Cr(VI) oxyanion by halloysite@ polyaniline hybrid nanotubes. ACS Appl Mater Interfaces, 2017, 9(7): 6030-6043

[82]

Zhu H, Du M, Zou M, Xu C, Fu Y. Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Trans, 2012, 41: 10465-10471

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/