Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica

Juan Carlos Valverde , Dagoberto Arias , Rooel Campos , María Fernanda Jiménez , Laura Brenes

Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (3) : 232 -243.

PDF
Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (3) : 232 -243. DOI: 10.1007/s40974-020-00172-4
Original Article

Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica

Author information +
History +
PDF

Abstract

In Costa Rica, a diversification of the energy matrix has been developed, regarded as a source of energy of great potential in the short term. However, the current market is unclear and has multiple deficiencies that are necessary to identify and the government lacks studies that allow it to understand the current market. The study analyzed the perception of the biomass market with forest residues and agro-industrial in Costa Rica and their potential for development under a circular economy scheme. For that producers, intermediaries and consumers of arboreal and agro-industrial biomass in the North Zone of Costa Rica were employed, analyzing the market from a technical, environmental, financial and social perspective and identifying the variables that limit the market. The results showed similarity between agro-industrial and forest markets, as well as in ecological and social aspects, with similar perceptions between the sectors analyzed. However, the financial and technical elements presented significant differentiation, specifically in terms of the price of the biomass, homogeneity of the same (both species and presentation) and associated costs, in addition to the competence of other biomass fuels. The analysis showed that biomass variability in how much performance affects 42.5% of the market, species variation 24.8%, moisture content 10.6%, biomass availability in time 8.4%, organization and market structure 8.9% and other variables and 6.8%. If a market structure is needed in terms of biomass sales and articulation between producers and demanders together with key intermediaries for the viability of biomass market in Costa Rica.

Keywords

Biomass / Forest residues / Agro-industrial residues / Energy market

Cite this article

Download citation ▾
Juan Carlos Valverde, Dagoberto Arias, Rooel Campos, María Fernanda Jiménez, Laura Brenes. Forest and agro-industrial residues and bioeconomy: perception of use in the energy market in Costa Rica. Energy, Ecology and Environment, 2021, 6(3): 232-243 DOI:10.1007/s40974-020-00172-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alaloul M, Liew M, Zawawi N, Kennedy I. Industrial revolution 4.0 in the construction industry: challenges and opportunities for stakeholders. Ain Shams Eng J, 2020, 11: 225-230

[2]

Alimi M, Rhif A, Rebai A. Nonlinear dynamic of the renewable energy cycle transition in Tunisia: evidence from smooth transition autoregressive models. Int J Hydrog Energy, 2017, 42: 8670-8679

[3]

Baul T, Datta D, Alam A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy, 2018, 114: 598-608

[4]

Beluli R. Smart beer production as a possibility for cyber-attack within the industrial process in automatic control. Proc Comput Sci, 2019, 158: 206-213

[5]

Bulut U, Muratoglu G. Renewable energy in Turkey: great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, 2018, 123: 240-250

[6]

Cambero C, Alexandre M, Sowlati T. Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: a case study in British Columbia, Canada. Resour Conserv Recycl, 2015, 105: 59-72

[7]

Chidanand FC, Sisodia G, Gopalan S. A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids. Sustain Cities Soc, 2018, 40: 735-745

[8]

Cho J, Kim J. Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops. Energy, 2019, 185: 527-540

[9]

Cosentino V, Favuzza S, Graditi G, Ippolito M, Massaro F, Sanseverino E, Zizz G. Smart renewable generation for an islanded system. Technical and economic issues of future scenarios. Energy, 2012, 39: 196-204

[10]

Fortini B, Dye K. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?. Glob Ecol Conserv, 2017, 11: 207-212

[11]

Franklin-Johnson EF, Canning L. Resource duration as a managerial indicator for circular economy performance. J Clean Prod, 2016, 133: 589-598

[12]

Gadaleta M, Pellicciari M, Berselli G. Optimization of the energy consumption of industrial robots for automatic code generation. Robot Comput Integr Manuf, 2019, 57: 452-464

[13]

Gazijahani F, Salehi J. Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach. Energy, 2018, 160: 999-1015

[14]

González J, Roldán C, Arias D, Valverde JC, Camacho D. Evaluación financiera de generación eléctrica de 2 MW a partir de biomasa forestal en Costa Rica. Revista Forestal Mesoamericana Kurú, 2018, 15(1): 35-42

[15]

Guevara G, Arias D, Valverde J, Campos R. Factibilidad técnica y financiera del cultivo de Pennisetum purpureum (Schumach) para la producción de biomasa con el fin de generación eléctrica. Revista Forestal Mesoamericana Kurú, 2018, 15(1): 05-13

[16]

Hodges G, Chapagain B, Watcharaanantapong D, Poudyal N, Kline K, Dale V. Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy. Renew Sustain Energy Rev, 2019

[17]

ICE Potencialidad de nuevas ernergías de producción eléctrica, 2015 San José ICE

[18]

Kahrl F, Su Y, Tennigkeit T, Yang Y, Xu J. Large or small? Rethinking China’s forest bioenergy policies. Biomass Bioenerg, 2013, 59: 84-91

[19]

Koengkan M, Fuinhas J, Marques A. Fuinhas J, Cardoso A. The effect of fiscal and financial incentive policies for renewable energy on CO2 emissions: the case for the Latin American region. The extended energy-growth nexus: theory and empirical applications, 2019 Amsterdan Academic Press 141-172

[20]

Lee L, Yang J. Global energy transitions and political systems. Renew Sustain Energy Rev, 2019

[21]

Lingcheng K, Zhenning Z, Jiaping X, Jing L, Yuping C. Multilateral agreement contract optimization of renewable energy power grid-connecting under uncertain supply and market demand. Comput Ind Eng, 2019, 135: 689-701

[22]

Mahidin E, Mamat M, Sani M, Khoerunnisa F, Kadarohman A. Target and demand for renewable energy across 10 ASEAN countries by 2040. Electr J, 2019

[23]

Manolis N, Zagas T, Karetsos G, Poravou C. Ecological restrictions in forest biomass extraction for a sustainable renewable energy production. Renew Sustain Energy Rev, 2019, 110: 290-297

[24]

Morseletto P. Targets for a circular economy. Resour Conserv Recycl, 2020

[25]

Nematollahi O, Hoghooghi H, Rasti M, Sedaghat A. Energy demands and renewable energy resources in the Middle Eas. Renew Sustain Energy Rev, 2016, 54: 1172-1181

[26]

Pang X, Mörtberg U, Sallnäs O, Trubins R, Nordström E, Böttcher H. Habitat network assessment of forest bioenergy options using the landscape simulator LandSim: a case study of Kronoberg, southern Sweden. Ecol Model, 2017, 345: 99-112

[27]

Popescu G, Mieila M, Nica E, Andrei J. The emergence of the effects and determinants of the energy paradigm changes on European Union economy. Renew Sustain Energy Rev, 2018, 81: 768-774

[28]

Röder M, Thiffault E, Martínez-Alonso C, Senez-Gagnon F, Paradis L, Thornley P. Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass Bioenerg, 2019, 121: 99-114

[29]

Rodríguez M, Arias D, Valverde JC, Camacho D. Ecuaciones alométricas para la estimación de la biomasa arbórea a partir de residuos de plantaciones de Gmelina arborea y Tectona grandis en Guanacaste, Costa Rica. Revista Forestal Mesoamericana Kurú, 2018, 15(1): 60-66

[30]

Royston S, Selby J, Shove E. Invisible energy policies: a new agenda for energy demand reduction. Energy Policy, 2018, 123: 127-135

[31]

Sacchelli S, De Meo I, Paletto A. Bioenergy production and forest multifunctionality: a trade-off analysis using multiscale GIS model in a case study in Italy. Appl Energy, 2013, 104: 10-20

[32]

Singh K, Awasthi A, Sharma SK. Biomass production from neglected and underutilized tall perennial grasses on marginal lands in India: a brief review. Energy Ecol Environ, 2018, 3: 207-215

[33]

Specht J, Madlener R. Energy Supplier 20: a conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised. Energy Policy, 2019

[34]

Tiwary A, Spasova S, Williams I. A community-scale hybrid energy system integrating biomass for localised solid waste and renewable energy solution: evaluations in UK and Bulgaria. Renewable Energy, 2019, 39: 960-967

[35]

Torres C, Chaves M, Urvina L, Moya R. Evaluación de la incidencia de pellets y astillas de madera en el desempeño de un gasificador tipo “downdraft”. Revista Forestal Mesoamericana Kurú, 2018, 15(1): 23-34

[36]

Ulloa A, Camacho D, Arias D, Valverde JC. Análisis del mercado de biomasa forestal con fines energéticos en la zona de Guanacaste, Costa Rica. Revista Forestal Mesoamericana Kurú, 2018, 15(1): 43-50

[37]

Viviescas C, Lima L, Diuana D, Vasquez E, Ludovique C, Silva G Contribution of variable renewable energy to increase energy security in Latin America: complementarity and climate change impacts on wind and solar resources. Renew Sustain Energy Rev, 2019

[38]

Zheng Y, Jenkins B, Kornbluth K, Kendall A, Træholt C. Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty. Appl Energy, 2018, 230: 836-844

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/