Estimating excess heat from exhaust gases: why corrosion matters
Ali Aydemir , Markus Fritz
Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (5) : 330 -343.
Estimating excess heat from exhaust gases: why corrosion matters
Industry accounts for about 30% of the final energy demand in Germany. Of this, 75% is used to provide heat, but a considerable proportion of the heat is unused. A recent bottom-up estimate shows that up to 13% of the fuel consumption of industry is lost as excess heat in exhaust gases. However, this estimate only quantifies a theoretical potential, as it does not consider the technical aspects of usability. In this paper, we also estimate the excess heat potentials of industry using a bottom-up method. Compared to previous estimates, however, we go one step further by including the corrosiveness of the exhaust gases and thus an important aspect of the technical usability of the excess heat contained in them. We use the emission declarations for about 300 production sites in Baden-Württemberg as a data basis for our calculations. For these sites, we calculate a theoretical excess heat potential of 2.2 TWh, which corresponds to 12% of the fuel consumption at these sites. We then analyse how much this theoretical potential is reduced if we assume that the energy content of sulphur-containing exhaust gases is only used up to the sulphuric acid dew point in order to prevent corrosion. Our results show that 40% of the analysed excess heat potential is corrosive, which reduces the usable potential to 1.3 TWh or 7% of fuel consumption. In principle, it is possible to use the energy of the excess heat from sulphur-containing exhaust gases even below the dew point, but this is likely to involve higher costs. This therefore represents an obstacle to the full utilisation of the available excess heat. Our analysis shows that considering corrosion is important when estimating industrial excess heat potentials.
Industrial waste heat / Excess heat evaluation / Bottom-up approach / Waste heat recovery
| [1] |
|
| [2] |
Aydemir A, Doderer H, Hoppe F, Braungardt S (2019) Abwärmenutzung in Unternehmen. Studie für das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-5495991.pdf. Accessed 11 Dec 2019 |
| [3] |
|
| [4] |
|
| [5] |
Bloemer S, Thomassen P, Hespeler S, Grytsch G, Zopff C, Richter S, Huber B, Ochse S, Pehnt M, Hering D, Götz C, Jäger S (2019) EnEff:Wärme - netzgebundene Nutzung industrieller Abwärme (NENIA) - Kombinierte räumlich-zeitliche Modellierung von Wärmebedarf und Abwärmeangebot in Deutschland: Schlussbericht im Auftrag des Bundesministeriums für Wirtschaft und Energie: Berichtszeitraum: 01.08.2015–31.07.2018. https://edocs.tib.eu/files/e01fb19/1667658271.pdf. Accessed 11 Dec 2019 |
| [6] |
|
| [7] |
Bornemann T (2017) Industrial waste heat utilization. Dissertation, Kassel University Press GmbH |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Deutsche Bundesstiftung Umwelt (2002) Wärmerückgewinnung aus Ziegelei-Abgasen zur Nutzung in einem Fernwärmenetz (english: Heat recovery from brickworks exhaust gases for use in a district heating network): Project description. https://www.dbu.de/projekt_09470/01_db_2409.html. Accessed 11 December 2019 |
| [12] |
|
| [13] |
European Commission (EC) (2016) An EU strategy on heating and cooling. https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf. Accessed 25 March 2020 |
| [14] |
|
| [15] |
Grote L, Hoffmann P, Tänzer G (2015) Abwärmenutzung-Potentiale, Hemmnisse und Umsetzungsvorschläge. Saarbrücken: Institut für ZukunftsEnergieSysteme (IZES). Zugriff am 4:2016 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Johnson I, William T, Choate WT, Amber Davidson A (2008) Waste heat recovery: technology and opportunities in US industry. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Accessed 26 April 2016 |
| [20] |
|
| [21] |
|
| [22] |
Manz P, Fleiter T, Aydemir A (2018) Developing a georeferenced database of energy-intensive industry plants for estimation of excess heat potentials. In: ECEEE industrial summer study proceedings, 2018-June, pp 239–247 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Pehnt M, Bodeker J, Arens M, Jochem E, Idrissova F (2011) Industrial waste heat-tapping into a neglected efficiency potential. In: ECEEE 2011 Summer Study: conference proceedings, June 2011, pp 691–700 |
| [28] |
Pellegrino JL, Margolis N, Justiniano M, Miller M, Thedki A (2004) Energy use, loss, and opportunities analysis for US manufacturing and mining. Energetics, Incorporated and E3M, Incorporated for the U.S. Department of Energy Energy. https://www.energy.gov/sites/prod/files/2013/11/f4/energy_use_loss_opportunities_analysis.pdf. Accessed 25 Mar 2020 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Saechsische Energieagentur GmbH (2012) Technologien zur Abwärmenutzung. http://www.saena.de/download/Broschueren/BU_Technologien_der_Abwaermenutzung.pdf. Accessed 27 Jan 2016 |
| [33] |
Viswanathan VV, Davies RW, Holbery JD (2006) Opportunity analysis for recovering energy from industrial waste heat and emissions. Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15803.pdf. Accessed 25 Mar 2020 |
| [34] |
|
/
| 〈 |
|
〉 |