Estimating excess heat from exhaust gases: why corrosion matters

Ali Aydemir , Markus Fritz

Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (5) : 330 -343.

PDF
Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (5) : 330 -343. DOI: 10.1007/s40974-020-00171-5
Original Article

Estimating excess heat from exhaust gases: why corrosion matters

Author information +
History +
PDF

Abstract

Industry accounts for about 30% of the final energy demand in Germany. Of this, 75% is used to provide heat, but a considerable proportion of the heat is unused. A recent bottom-up estimate shows that up to 13% of the fuel consumption of industry is lost as excess heat in exhaust gases. However, this estimate only quantifies a theoretical potential, as it does not consider the technical aspects of usability. In this paper, we also estimate the excess heat potentials of industry using a bottom-up method. Compared to previous estimates, however, we go one step further by including the corrosiveness of the exhaust gases and thus an important aspect of the technical usability of the excess heat contained in them. We use the emission declarations for about 300 production sites in Baden-Württemberg as a data basis for our calculations. For these sites, we calculate a theoretical excess heat potential of 2.2 TWh, which corresponds to 12% of the fuel consumption at these sites. We then analyse how much this theoretical potential is reduced if we assume that the energy content of sulphur-containing exhaust gases is only used up to the sulphuric acid dew point in order to prevent corrosion. Our results show that 40% of the analysed excess heat potential is corrosive, which reduces the usable potential to 1.3 TWh or 7% of fuel consumption. In principle, it is possible to use the energy of the excess heat from sulphur-containing exhaust gases even below the dew point, but this is likely to involve higher costs. This therefore represents an obstacle to the full utilisation of the available excess heat. Our analysis shows that considering corrosion is important when estimating industrial excess heat potentials.

Keywords

Industrial waste heat / Excess heat evaluation / Bottom-up approach / Waste heat recovery

Cite this article

Download citation ▾
Ali Aydemir, Markus Fritz. Estimating excess heat from exhaust gases: why corrosion matters. Energy, Ecology and Environment, 2020, 5(5): 330-343 DOI:10.1007/s40974-020-00171-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aydemir A. Ermittlung von Energieeinsparpotenzialen durch überbetriebliche Wärmeintegration in Deutschland, 2018 Darmstadt Universitäts- und Landesbibliothek Darmstadt

[2]

Aydemir A, Doderer H, Hoppe F, Braungardt S (2019) Abwärmenutzung in Unternehmen. Studie für das Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-5495991.pdf. Accessed 11 Dec 2019

[3]

Bergmeier M. The history of waste energy recovery in Germany since 1920. Energy, 2003, 28: 1359-1374

[4]

Bianchi G, Panayiotou GP, Aresti L, Kalogirou SA, Florides GA, Tsamos K, Tassou SA, Christodoulides P. Estimating the waste heat recovery in the European Union Industry. Energy Ecol Environ, 2019, 4: 211-221

[5]

Bloemer S, Thomassen P, Hespeler S, Grytsch G, Zopff C, Richter S, Huber B, Ochse S, Pehnt M, Hering D, Götz C, Jäger S (2019) EnEff:Wärme - netzgebundene Nutzung industrieller Abwärme (NENIA) - Kombinierte räumlich-zeitliche Modellierung von Wärmebedarf und Abwärmeangebot in Deutschland: Schlussbericht im Auftrag des Bundesministeriums für Wirtschaft und Energie: Berichtszeitraum: 01.08.2015–31.07.2018. https://edocs.tib.eu/files/e01fb19/1667658271.pdf. Accessed 11 Dec 2019

[6]

Bonilla JJ, Blanco JM, López L, Sala JM. Technological recovery potential of waste heat in the industry of the Basque Country. Appl Therm Eng, 1997, 17: 283-288

[7]

Bornemann T (2017) Industrial waste heat utilization. Dissertation, Kassel University Press GmbH

[8]

Broberg Viklund S, Johansson MT. Technologies for utilization of industrial excess heat: potentials for energy recovery and CO2 emission reduction. Energy Convers Manag, 2014, 77: 369-379

[9]

Brueckner S, Miró L, Cabeza LF, Pehnt M, Laevemann E. Methods to estimate the industrial waste heat potential of regions - A categorization and literature review. Renew Sustain Energy Rev, 2014, 38: 164-171

[10]

Brueckner S, Arbter R, Pehnt M, Laevemann E. Industrial waste heat potential in Germany: a bottom-up analysis. Energy Effic, 2017, 10: 513-525

[11]

Deutsche Bundesstiftung Umwelt (2002) Wärmerückgewinnung aus Ziegelei-Abgasen zur Nutzung in einem Fernwärmenetz (english: Heat recovery from brickworks exhaust gases for use in a district heating network): Project description. https://www.dbu.de/projekt_09470/01_db_2409.html. Accessed 11 December 2019

[12]

Effenberger H. Dampferzeugung, 2000 Berlin Springer

[13]

European Commission (EC) (2016) An EU strategy on heating and cooling. https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf. Accessed 25 March 2020

[14]

Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renew Sustain Energy Rev, 2016, 57: 1568-1579

[15]

Grote L, Hoffmann P, Tänzer G (2015) Abwärmenutzung-Potentiale, Hemmnisse und Umsetzungsvorschläge. Saarbrücken: Institut für ZukunftsEnergieSysteme (IZES). Zugriff am 4:2016

[16]

Hammond GP, Norman JB. Heat recovery opportunities in UK industry. Appl Energy, 2014, 116: 387-397

[17]

Herzog T, Mueller W, Spiegel W, Brell J, Molitor D, Schneider D. Korrosion durch Taupunkte und deliqueszente Salze im Dampferzeuger und in der Rauchgasreinigung. Energie aus Abfall, 2012, 9: 429-460

[18]

Hirzel S. Energiekompendium: Ein Nachschlagewerk für Grundbegriffe, Konzepte und Technologien: mit 323 Abbildungen und 107 Tabellen. EnArgus, 2017 Stuttgart Fraunhofer-Verlag

[19]

Johnson I, William T, Choate WT, Amber Davidson A (2008) Waste heat recovery: technology and opportunities in US industry. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Accessed 26 April 2016

[20]

Klemeš JJ, Kravanja Z. Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). Curr Opin Chem Eng, 2013, 2: 461-474

[21]

Linnhoff B, Flower JR. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J, 1978, 24: 633-642

[22]

Manz P, Fleiter T, Aydemir A (2018) Developing a georeferenced database of energy-intensive industry plants for estimation of excess heat potentials. In: ECEEE industrial summer study proceedings, 2018-June, pp 239–247

[23]

McKenna RC, Norman JB. Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy, 2010, 38: 5878-5891

[24]

Miró L, Brückner S, Cabeza LF. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renew Sustain Energy Rev, 2015, 51: 847-855

[25]

Papapetrou M, Kosmadakis G, Cipollina A, La Commare U, Micale G. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl Therm Eng, 2018, 138: 207-216

[26]

Pehnt M. Energieeffizienz: Ein Lehr- und Handbuch, 2010 Berlin Springer

[27]

Pehnt M, Bodeker J, Arens M, Jochem E, Idrissova F (2011) Industrial waste heat-tapping into a neglected efficiency potential. In: ECEEE 2011 Summer Study: conference proceedings, June 2011, pp 691–700

[28]

Pellegrino JL, Margolis N, Justiniano M, Miller M, Thedki A (2004) Energy use, loss, and opportunities analysis for US manufacturing and mining. Energetics, Incorporated and E3M, Incorporated for the U.S. Department of Energy Energy. https://www.energy.gov/sites/prod/files/2013/11/f4/energy_use_loss_opportunities_analysis.pdf. Accessed 25 Mar 2020

[29]

Persson U, Möller B, Werner S. Heat Roadmap Europe: identifying strategic heat synergy regions. Energy Policy, 2014, 74: 663-681

[30]

Rattner AS, Garimella S. Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA. Energy, 2011, 36: 6172-6183

[31]

Rehfeldt M, Fleiter T, Toro F. A bottom-up estimation of the heating and cooling demand in European industry. Energy Effic, 2018, 11: 1057-1082

[32]

Saechsische Energieagentur GmbH (2012) Technologien zur Abwärmenutzung. http://www.saena.de/download/Broschueren/BU_Technologien_der_Abwaermenutzung.pdf. Accessed 27 Jan 2016

[33]

Viswanathan VV, Davies RW, Holbery JD (2006) Opportunity analysis for recovering energy from industrial waste heat and emissions. Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15803.pdf. Accessed 25 Mar 2020

[34]

Weißbach W, Dahms M, Jaroschek C. Werkstoffkunde, 2015 Wiesbaden Springer Fachmedien Wiesbaden

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/