Potential of Ag–Fe co-doped TiO2 nanocomposite for solar photocatalysis of high COD pharmaceutical effluent and influencing factors

Bhatti Darshana , Sachin Parikh , Manan Shah

Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (5) : 344 -358.

PDF
Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (5) : 344 -358. DOI: 10.1007/s40974-020-00162-6
Original Article

Potential of Ag–Fe co-doped TiO2 nanocomposite for solar photocatalysis of high COD pharmaceutical effluent and influencing factors

Author information +
History +
PDF

Abstract

Ag–Fe co-doped TiO2 photocatalysts were synthesized by sol–gel method followed by calcination and characterized using X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, UV–Vis spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray analysis. Photocatalytic activity of these photocatalysts was compared with undoped TiO2 and Fe-doped TiO2 for the degradation of synthetic wastewater prepared from diflourotriazoleacetophenone (DFTA) (initial concentration of 8 g/L with initial COD of 75,000 mg/L). The nanoparticles were engineered by varying the catalyst composition (Ti/Ag molar ratio 10–55) for efficient photocatalytic degradation of DFTA. Factors affecting degradation such as catalyst dosage (1–8 g/L), adsorption time in dark (15–60 min) and pH (2–8) were studied to determine optimum conditions for wastewater treatment. The catalyst composition with Fe content of 0.5 wt% and Ti-to-Ag molar ratio of 30, catalyst dosage of 3 g/L, pH 5, adsorption time in dark of 30 min and solar radiation time of 5 h were found to be the optimum conditions for the efficient photocatalytic degradation of DFTA.

Keywords

Sol–gel synthesis / Ag–Fe co-doped TiO2 / Diflourotriazoleacetophenone / Solar photocatalysis

Cite this article

Download citation ▾
Bhatti Darshana, Sachin Parikh, Manan Shah. Potential of Ag–Fe co-doped TiO2 nanocomposite for solar photocatalysis of high COD pharmaceutical effluent and influencing factors. Energy, Ecology and Environment, 2020, 5(5): 344-358 DOI:10.1007/s40974-020-00162-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel Messih MF, Ahmed MA, Soltan A, Anis SS. Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. J Photochem Photobiol A Chem, 2017, 335: 40-51

[2]

Al-Hartomy OA. Synthesis, characterization, photocatalytic and photovoltaic performance of Ag-doped TiO2 loaded on the Pt-carbon spheres. Mater Sci Semicond Process, 2014, 27: 71-78

[3]

Angkaew S, Limsuwan P. Preparation of silver–titanium dioxide core-shell (Ag @ TiO2) nanoparticles: effect of Ti–Ag mole ratio. Proc Eng, 2012, 32: 649-655

[4]

Asiltürk M, Sayilkan F, Arpaç E. Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. J Photochem Photobiol A Chem, 2009, 203: 64-71

[5]

Atkinson MR, Parkes EA, Polya JB. Triazoles. Part IV. Ultra-violet absorption spectra of some 1:2:4-triazoles. J Chem Soc, 1954

[6]

Bachvarova-Nedelcheva AD, Iordanova RS, Stoyanova AM, Gegova R. Photocatalytic properties of ZnO/TiO2 powders obtained via combustion gel method. Cent Eur J Chem, 2013, 11: 364-370

[7]

Bhatti D, Parikh S. Comparison of photocatalytic activity of various metallic and non-metallic doped TiO2 nanoparticles for treatment of pharmaceutical effluent. J Nano Sci Nano Eng Appl, 2018, 8: 7-14

[8]

Birben NC, Uyguner-Demirel CS, Kavurmaci SS, Gürkan YY, Turkten N, Cinar Z, Bekbolet M. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catal Today, 2017, 281: 78-84

[9]

Cao S, Chan T-S, Ying-Rui L, Shi X, Bing F, Zhijiao W, Li H, Liu K, Alzuabi S, Cheng P, Liu M, Li T, Chen X, Piao L. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy, 2019

[10]

Chattopadhyay S, Bysakh S, Mishra PM, De G. In situ synthesis of mesoporous TiO2 nanofibers surface-decorated with AuAg alloy nanoparticles anchored by heterojunction exhibiting enhanced solar active photocatalysis. Langmuir, 2019, 35: 14364-14375

[11]

Chen D, Ray AK. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Appl Catal B Environ, 1999, 23: 143-157

[12]

Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev, 2015, 44: 1861-1885

[13]

Chen Q, Zongxue Yu, Pan Y, Zeng G, Shi H, Yang X, Li F, Yang S, He Y. Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag–TiO2 nanocomposites. J Mater Sci Mater Electron, 2017, 28: 3865-3874

[14]

Chi Y, Yuan Q, Li Y, Zhao L. Magnetically separable Fe3O4@SiO2@TiO2–Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J Hazard Mater, 2013, 262: 404-411

[15]

Choi J, Park H, Hoffmann MR. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C, 2010, 114: 783-792

[16]

Cludia T, de Lima JC, Pratesh PB (2012) The quantification of crystalline phases in materials: applications of Rietveld method. In: Sintering-methods and products. (InTech)

[17]

Crisan M, Raileanu M, Dragan N, Cris D, Ianculescub A, Nit I, Oance P, Omacescu SS, Stanic N, Vasile B, Stan C. Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity. Appl Catal A Gen, 2015, 504: 130-142

[18]

Crişan M, Drăgan N, Crişan D, Ianculescu A, Niţoi I, Oancea P, Stănică N. The effects of Fe, Co and Ni dopants on TiO2 structure of sol–gel nanopowders used as photocatalysts for environmental protection: a comparative study. Ceram Int, 2016, 42: 3088-3095

[19]

Cui B, Peng H, Xia H, Guo X, Guo H. Magnetically recoverable core–shell nanocomposites γ-Fe2O3@SiO2@TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Sep Purif Technol, 2013, 103: 251-257

[20]

Ghorbanpour M, Atabak F. Iron-doped TiO2 catalysts with photocatalytic activity. J Water Environ Nanotechnol, 2019, 4: 60-66

[21]

Han F, Kambala VSR, Dharmarajan R, Liu Y, Naidu R. Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+ doped TiO2 nanocatalysts. Environ Technol Innov, 2018, 12: 27-42

[22]

Harifi T, Montazer M. Fe3+Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl Catal A Gen, 2014, 473: 104-115

[23]

Harikishore M, Sandhyarani M, Venkateswarlu K, Nellaippan TA, Rameshbabu N. Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Proc Mater Sci, 2014, 6: 557-566

[24]

He J, Zeng X, Lan S, Lo IMC. Reusable magnetic Ag/Fe, N-TiO2/Fe3O4@SiO2 composite for simultaneous photocatalytic disinfection of E. coli and degradation of bisphenol A in sewage under visible light. Chemosphere, 2019, 217: 869-878

[25]

Hirakawa T, Kamat PV. Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc, 2005, 127: 3928-3934

[26]

Huan TN, Dalla Corte DA, Lamaison S, Karapinar D, Lutz L, Menguy N, Mougel V. Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons. Proc Natl Acad Sci USA, 2019, 116: 9735-9740

[27]

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 2003, 107: 668-677

[28]

Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW. Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manag, 2017, 198: 78-94

[29]

Khanna A, Shetty KV. Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core–shell structured nanoparticles. Environ Sci Pollut Res, 2013, 20: 5692-5707

[30]

Khanna A, Shetty KV. Solar light-driven photocatalytic degradation of Anthraquinone dye-contaminated water by engineered Ag@TiO2 core–shell nanoparticles. Desalin Water Treat, 2014, 10: 376-385

[31]

Khanna A, Shetty VK. Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy, 2014, 99: 67-76

[32]

Kiliç M, Çinar Z. Hydroxyl radical reactions with 4-chlorophenol as a model for heterogeneous photocatalysis. J Mol Struct Theochem, 2008, 851: 263-270

[33]

Komaraiah D, Radha E, Nandakumar Kalarikkal J, Sivakumar MV Ramana, Reddy R Sayanna. Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int, 2019, 45: 25060-25068

[34]

Kuhn DL, Zander Z, Kulisiewicz AM, Debow SM, Haffey C, Fang H, Kong X-T, Qian Y, Walck SD, Govorov AO, Rao Y, Dai H-L, DeLacy BG. Fabrication of anisotropic silver nanoplatelets on the surface of TiO2 fibers for enhanced photocatalysis of a chemical warfare agent simulant, methyl paraoxon. J Phys Chem C, 2019, 123: 19579-19587

[35]

Miller OD, Hsu CW, Reid MTH, Qiu W, DeLacy BG, Joannopoulos JD, Soljačić M, Johnson SG. Fundamental limits to extinction by metallic nanoparticles. Phys Rev Lett, 2013

[36]

Mohd Razip NI, Lee KM, Lai CW, Ong BH. Recoverability of Fe3O4/TiO2 nanocatalyst in methyl orange degradation. Mater Res Express, 2019

[37]

Nagaveni KMSHM. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B Environ, 2003, 45: 23-28

[38]

Nezamzadeh-Ejhieh A, Amiri M. CuO supported Clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol, 2013, 235: 279-288

[39]

Nezamzadeh-Ejhieh A, Badri A. Surfactant modified ZSM-5 zeolite as an active component of membrane electrode towards thiocyanate. Desalination, 2011, 281: 248-256

[40]

Nezamzadeh-Ejhieh A, Hushmandrad S. Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl Catal A Gen, 2010, 388: 149-159

[41]

Nezamzadeh-Ejhieh A, Moazzeni N. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J Ind Eng Chem, 2013, 19: 1433-1442

[42]

Petronella F, Truppi A, Sibillano T, Giannini C, Striccoli M, Comparelli R, Curri ML. Multifunctional TiO2/FexOy/Ag based nanocrystalline heterostructures for photocatalytic degradation of a recalcitrant pollutant. Catal Today, 2017, 284: 100-106

[43]

Qiu J, Zhang S, Zhao H. Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens Actuat B Chem, 2011, 160: 875-890

[44]

Safari M, Talebi R, Rostami M, Nikazar M, Dadvar M. Synthesis of iron-doped TiO2 for degradation of reactive Orange 16. J Environ Health Sci Eng, 2014

[45]

Shah M, Sircar A, Shaikh N, Patel K, Thakar V, Sharma D, Sarkar P, Vaidya D. Groundwater analysis of Dholera geothermal field, Gujarat, India for suitable applications. Groundw Sustain Dev, 2018, 7: 143-156

[46]

Shah M, Sircar A, Shaikh N, Patel K, Sharma S, Vaidya D. Comprehensive geochemical/hydrochemical and geo-thermometry analysis of Unai geothermal field, Gujarat, India. Acta Geochim, 2019, 38: 145

[47]

Shah M, Sircar A, Varsada R, Vaishnani S, Savaliya U, Faldu M, Vaidya D, Bhattacharya P. Assessment of geothermal water quality for industrial and irrigation purposes in the Unai geothermal field, Gujarat, India. Groundw Sustain Dev, 2019, 8: 59-68

[48]

Shah B, Kansara B, Shankar J, Soni M, Bhimjiyani P, Bhanushali T, Shah M, Sircar A. Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India. Groundw Sustain Dev, 2019

[49]

Singh P, Singh R, Borthakur A, Srivastava P, Srivastava N, Tiwary D, Mishra PK. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol Environ, 2016, 1: 131-140

[50]

Sood S, Umar A, Mehta SK, Kansal SK. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. J Colloid Interface Sci, 2015, 450: 213-223

[51]

Sun W, Li J, Yao G, Jiang M, Zhang F. Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation. Catal Commun, 2011, 16: 90-93

[52]

Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem, 2004, 163: 37-44

[53]

Tajana Preocanin NK. Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat Chem Acta, 2006, 79: 95-106

[54]

Tedsree K, Temnuch N, Sriplai N, Pinitsoontorn S (2017) Ag modified Fe3O4@TiO2 magnetic core–shell nanocomposites for photocatalytic degradation of methylene blue. In: Materials today: proceedings. Elsevier, Amsterdam, pp 6576–6584

[55]

Uddin MN, Desai FJ, Asmatulu E. Biomimetic electrospun nanocomposite fibers from recycled polystyrene foams exhibiting superhydrophobicity. Energy Ecol Environ, 2020, 5: 1-11

[56]

Varadharajan K, Singaram B, Mani R, Jeyaram J. Enhanced visible light photocatalytic activity of Ag and Zn doped and codoped TiO2 nanoparticles. J Clust Sci, 2016, 27: 1815-1829

[57]

Varnagiris S, Medvids A, Lelis M, Milcius D, Antuzevics A. Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis. J Photochem Photobiol A Chem, 2019, 382: 111941

[58]

Vijayalakshmi R, Rajendran V. Synthesis and characterization of nano-TiO2 via different methods. Sch Res Libr Arch Appl Sci Res, 2012, 4: 1183-1190

[59]

Wang W, Zhang J, Chen F, He D, Anpo M. Preparation and photocatalytic properties of Fe3+ doped Ag@TiO2 core–shell nanoparticles. J Colloid Interface Sci, 2008, 323: 182-186

[60]

Xin B, Jing L, Ren Z, Wang B, Fu H. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B, 2005, 109: 2805-2809

[61]

Xiu Z, Guo M, Zhao T, Pan K, Xing Z, Li Z, Zhou W. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chem Eng J, 2019

[62]

Yasmina M, Mourad K, Mohammed SH, Khaoula C (2014) Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO2. In: Energy procedia. Elsevier, Amsterdam, pp 559–566

[63]

Yeganeh M, Shahtahmasebi N, Kompany A, Karimipour M, Razavi F, Nasralla NHS, Šiller L. The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method. Phys B Condens Matter, 2017, 511: 89-98

[64]

Zhan J, Zhang H, Zhu G. Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceram Int, 2014, 40: 8547-8559

[65]

Zhang Z, Wang C-C, Zakaria R, Ying JY. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B, 1998, 102: 10871-10878

[66]

Zhong H, Wang Y, Yang H (2019) A novel transparent thermal insulation bilayer coating based on ATO/Black TiO2. In: Energy procedia. Elsevier, Amsterdam, pp 1072–1079

[67]

Zhou G, Meng H, Cao Y, Kou X, Duan S, Fan L, Xiao M, Zhou F, Li Z, Xing Z. Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticles-decorated Ti3+ self-doped porous black TiO2 pillars. J Ind Eng Chem, 2018, 64: 188-193

[68]

Zhu J, Chen F, Zhang J, Chen H, Anpo M. Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem, 2006, 180: 196-204

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/