Co-fired anode-supported solid oxide fuel cell for internal reforming of hydrocarbon fuel

S. Senthil Kumar , Vikram Jayaram , S. T. Aruna

Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (1) : 55 -68.

PDF
Energy, Ecology and Environment ›› 2021, Vol. 6 ›› Issue (1) : 55 -68. DOI: 10.1007/s40974-020-00153-7
Original Article

Co-fired anode-supported solid oxide fuel cell for internal reforming of hydrocarbon fuel

Author information +
History +
PDF

Abstract

Hydrocarbon-based solid oxide fuel cell (SOFC) is being projected as one of the possible alternatives to conventional internal combustion engines. However, the conventional Ni–YSZ anode is prone to carburization in the presence of hydrocarbon fuels. In the present study, an optimized Ni–Cu-based anode composition (Ni0.9–Cu0.1–YSZ0.95–GDC0.05) has been evolved based on accelerated carburization studies and phase analysis by X-ray diffractometry and X-ray photoelectron spectroscopy. The electrochemical parameters have been derived for the optimized anode composition, and its exchange current density is estimated to be 76.3 mA cm−2 at 780 °C. The main advantage of the optimized anode is its suitability for co-firing with the electrolyte. Using the optimized anode composition, anode-supported SOFC single cells (ASCs) have been fabricated and their electrical and electrochemical performances have been evaluated and compared with conventional ASC. The anode-supported co-cast SOFC with the optimized anode composition exhibits a power density of 436 mW cm−2 at 850 °C and 0.5 V with methane as fuel.

Keywords

SOFC anode / Carburization / Methane / Tape-casting / Co-firing

Cite this article

Download citation ▾
S. Senthil Kumar, Vikram Jayaram, S. T. Aruna. Co-fired anode-supported solid oxide fuel cell for internal reforming of hydrocarbon fuel. Energy, Ecology and Environment, 2021, 6(1): 55-68 DOI:10.1007/s40974-020-00153-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn K, He H, Vohs JM, Gorte RJ. Enhanced thermal stability of SOFC anodes made with CeO2–ZrO2 solutions. Electrochem Solid-State Lett, 2005, 8: A414-A417

[2]

Bayer BC, Bosworth DA, Michaelis FB, Blume R, Habler G, Abart R. In situ observations of phase transitions in metastable nickel (carbide)/carbon nanocomposites. J Phys Chem C, 2016, 120: 22571-22584

[3]

Cabrera ER, Atkinson A, Chadwick D. Catalytic steam reforming of methane over Ce0.9Gd0.1O2−x. Appl Catal B Environ, 2004, 47: 127-131

[4]

Camacho LFDE, Vivas JAM. Copper–terbia and copper–gadolina anodes for direct hydrocarbon solid oxide fuel cells: A fundamental comparison of their physicochemical features and performances. Fuel, 2009, 88: 1970-1974

[5]

Campbell CT, Peden CHF. Chemistry. Oxygen vacancies and catalysis on ceria surfaces. Science, 2004, 309(5735): 713-714

[6]

Chun CM, Ramanarayanan TA. Mechanism and control of carbon deposition on high temperature alloys. J Electrochem Soc, 2007, 154(9): C465-C471

[7]

Constantin G, Rossignol C, Briois P, Billard A, Dessemond L. Influence of gadolinia-doped ceria buffer layer on the durability of LSCF/CGO/YSZ system for IT-SOFC. J Electrochem Soc, 2012, 45: 295-305

[8]

Eric H, Timu M. Equilibrium relations in the system nickel oxide-copper oxide. Metall Trans B, 1979, 10: 561-563

[9]

Esconjauregui S, Whelan CM, Maex K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon, 2009, 47: 659-669

[10]

Fuerte A, Valenzuela RX, Escudero MJ, Daza L. Effect of cobalt incorporation in copper-ceria based anodes for hydrocarbon utilisation in Intermediate temperature solid oxide fuel cells. J Power Sources, 2011, 196: 4324-4331

[11]

Gorte RJ, Kim H, Vohs JM. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources, 2002, 106: 10-15

[12]

Grgicak CM, Pakulska MM, Brien JSO, Giorgi JB. Synergistic effects of Ni1−xCox-YSZ and Ni1−xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S. J Power Sources, 2008, 183: 26-33

[13]

Gross MD, Vohs JM, Gorte RJ. A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co. Electrochim Acta, 2007, 52: 1951-1957

[14]

Gupta GK, Dean AM, Ahn K, Gorte RJ. Show more comparison of conversion and deposit formation of ethanol and butane under SOFC conditions. J Power Sources, 2006, 158: 497-503

[15]

Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K. Internal reforming of SOFCs carbon deposition on fuel electrode and subsequent deterioration of cell. J Electrochem Soc, 2007, 154: B234-B241

[16]

Ingram DB, Linic S. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. J Electrochem Soc, 2009, 156: B1457-B1465

[17]

Kaur G, Basu S. Performance studies of copper–iron/ceria–yttria stabilized zirconia anode for electro-oxidation of butane in solid oxide fuel cells. J Power Sources, 2013, 241: 783-790

[18]

Kharlamova MV. Investigation of growth dynamics of carbon nanotubes. Beilstein J Nanotechnol, 2017, 8: 826-856

[19]

Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ. Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc, 2002, 149: A247-A250

[20]

Kim T, Ahn K, Vohs JM, Gorte RJ. Deactivation of ceria-based SOFC anodes in methanol. J Power Sources, 2007, 164: 42-48

[21]

Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem Solid State Lett, 2008, 11: B16-B19

[22]

Kim G, Lee S, Shin JY, Corre G, Irvine JTS, Vohs JM, Gorte RJ. Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem Solid-State Lett, 2009, 12: B48-B52

[23]

La Rosa D, Faro ML, Monforte G, Antonucci V, Aricò AS, Sin A. Recent advances on the development of NiCu alloy catalysts for IT-SOFCs. ECS Trans, 2007, 7: 1685-1693

[24]

Leonide A, Apel Y, Ivers-Tiffée E. SOFC modeling and parameter identification by means of impedance spectroscopy. ECS Trans, 2009, 19: 81-109

[25]

Li M, Hua B, Pu J, Chi B, Jian L. Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1 Yb0.1O3−δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells. Sci Rep, 2015, 5(7667): 1-7

[26]

Lu XC, Zhu JH, Bi ZH. Fe alloying effect on the performance of the Ni anode in hydrogen fuel. Solid State Ionics, 2009, 180: 265-270

[27]

Ma Q, Tietz F, Sebold D, Stöver D. Y-substituted SrTiO3–YSZ composites as anode materials for solid oxide fuel cells: interaction between SYT and YSZ. J Power Sources, 2010, 195: 1920-1925

[28]

Ma Q, Tietz F, Stöver D. Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells. Solid State Ion, 2011, 192: 535-539

[29]

Ma Q, Tietz F, Leonide A, Ivers-Tiffee E. Electrochemical performances of solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anode materials. J Power Sources, 2011, 196: 7308-7312

[30]

Mcintosh S, Vohs JM, Gorte RJ. Impedance spectroscopy for the characterization of Cu-Ceria-YSZ anodes for SOFCs. J Electrochem Soc, 2003, 150: A1305-A1312

[31]

Meng XX, Gong X, Yang NT, Tan XY, Ma ZF, Xuebao WH. Preparation and properties of direct-methane solid oxide fuel cell based on a graded Cu–CeO2–Ni-YSZ composite anode. Acta Phys Chim Sin, 2013, 29: 1719-1726

[32]

Mirzababaei J, Chuang SSC. La0.6Sr0.4Co0.2Fe0.8O3 perovskite: a stable anode catalyst for direct methane solid oxide fuel cells. Catalysts, 2014, 4: 146

[33]

Mishima Y, Mitsuyasu H, Ohtaki M, Eguchi K. Solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttria-stabilized zirconia. J Electrochem Soc, 1998, 145: 1004-1007

[34]

Mogensen M, Kammer K. Conversion of hydrocarbons in solid oxide fuel cells. Annu Rev Mater Res, 2003, 33: 321-331

[35]

Muccillo R, Muccillo ENS, Fonseca FC, Florio DZD. Characteristics and performance of electrolyte-supported solid oxide fuel cells under ethanol and hydrogen. J Electrochem Soc, 2008, 155: B232-B235

[36]

Murray EP, Tsai T, Barnett SA. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400: 649-651

[37]

Neofytidis C, Dracopoulos V, Neophytides SG, Niakolas DK. Electrocatalytic performance and carbon tolerance of ternary Au–Mo–Ni/GDC SOFC anodes under CH4-rich internal steam reforming conditions. Catal Today, 2018, 310: 157-165

[38]

Noren DA, Hoffman MA. Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J Power Sources, 2005, 152: 175-181

[39]

Palaniyandi V, Shamsuzzoha M, Ada ET, Zangari G, Reddy RG. Microstructural evolution of nickel nanoparticle catalysts supported on gadolinium-doped ceria during autothermal reforming of iso-octane. J Electron Mater, 2006, 35: 814-821

[40]

Park S, Vohs JM, Gorte RJ. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404: 265-267

[41]

Patil KC, Aruna ST, Mimani T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci, 2002, 6: 507-512

[42]

Prakash BS, Kumar SS, Aruna ST. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. Bull Mater Sci, 2017, 40: 441-452

[43]

Rao R, Sharma R, Abild-Pedersen F, Nørskov JK, Harutyunyan AR. Insights into carbon nanotube nucleation: cap formation governed by catalyst interfacial step flow. Sci Rep, 2014, 4(6510): 1-6

[44]

Rodriguez NM, Kim MS, Baker RTK. Deactivation of copper nickel-catalysts due to changes in surface composition. J Catal, 1993, 140: 16-29

[45]

Rührup V, Wiemhöfer HD, Naturforsch Z. Ionic conductivity of Gd-and Y-doped ceria-zirconia solid solutions. Adv J Chem Sci, 2006, 61(7): 916-922

[46]

Rupp JLM, Infortuna A, Gauckler LJ. Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells. J Am Ceram Soc, 2007, 90: 1792-1797

[47]

Sarno C, Luisetto I, Zurlo F, Licoccia S, Bartolomeo ED. Lanthanum chromite based composite anodes for dry reforming of methane. Int J Hydrog Energy, 2018, 43(31): 14742-14750

[48]

Shiratori Y, Oshima T, Sasaki K. Feasibility of direct-biogas SOFC. Int J Hydrog Energy, 2008, 33: 6316-6321

[49]

Simwonis D, Tietz F, Stöver D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ion, 2000, 132: 241-251

[50]

Sumi H, Lee YH, Muroyama H, Matsui T, Kamijo M, Mimuro S, Yamanaka M, Nakajima Y, Eguchi K. Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells. J Power Sources, 2011, 196: 4451-4457

[51]

Sumi H, Shimada H, Yamaguchi T, Hamamoto K, Suzuki T, Fujishiro Y. Bansal NP, Kusnezoff M, Shimamura K. Development of microtubular solid oxide fuel cells using hydrocarbon fuels. Advances in solid oxide fuel cells and electronic ceramics, 2015 New York Wiley 1-3

[52]

Sun C, Su R, Chen J, Lu L, Guan P. Carbon formation mechanism of C2H2 in Ni-based catalysts revealed by in situ electron microscopy and molecular dynamics simulations. ACS Omega, 2019, 4: 8413-8420

[53]

Vogler M. Thesis: elementary kinetic modelling applied to solid oxide fuel cell pattern anode and a direct flame fuel cell system, 2009 Płock Heidelberg University Publishing 33

[54]

Wang Z, Weng W, Cheng K, Du P, Shen G, Han G. Catalytic modification of Ni–Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells. J Power Sources, 2008, 179: 541-546

[55]

Woo E, Moon H, Park M, Hoon S. Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. Int J Hydrog Energy, 2009, 34: 5537-5545

[56]

Wu C, Wu F, Bai Y, Liu Y, Sun J. Hydrogen Generation from ethanol steam reforming over rare earth promoted nickel-based catalysts. IEEE, 2007

[57]

Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T. Single-chamber SOFCs using dimethyl ether and ethanol. J Electrochem Soc, 2007, 8: B865-B870

[58]

Yu F, Xia J, Zhang Y, Weizi C, Xie Y, Yang N, Liu J, Liu M. New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation. Appl Energy, 2019, 256: 113910

[59]

Zhang X, Ohara S, Chen H, Fukui T. Conversion of methane to syngas in a solid oxide fuel cell with Ni–SDC anode and LSGM electrolyte. Fuel, 2002, 81: 989-996

[60]

Zhao L, Ye X, Zhan Z. High-performance cathode-supported solid oxide fuel cells with copper cermet anodes. J Power Sources, 2011, 196: 6201-6204

[61]

Zhao K, Hou X, Norton MG, Ha S. Application of a NiMo–Ce0.5Zr0.5O2−δ catalyst for solid oxide fuel cells running on gasoline. J Power Sources, 2019, 435: 226732

[62]

Zhou W, Shao Z, Liang F, Chen ZG, Zhu Z, Jin W, Xu N. A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J Mater Chem, 2011, 21: 15343-15351

AI Summary AI Mindmap
PDF

339

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/