Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora

Pallavi Saxena , Vishambhar Sangela , Shivendu Ranjan , Venkatesh Dutta , Nandita Dasgupta , Mahendra Phulwaria , Devendra Singh Rathore , Harish

Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (4) : 240 -252.

PDF
Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (4) : 240 -252. DOI: 10.1007/s40974-020-00151-9
Review Paper

Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora

Author information +
History +
PDF

Abstract

Currently, different nanomaterials are being used in various commercial products in different sectors. Among them, carbon nanomaterials are one of the most promising engineered nanoforms of material. The excellent flexibility and capability to conduct electricity and heat make them suitable for many industrial purposes. It is predicted that nanomaterials production volumes will be increasing constantly during the next decades. However, the question arises what would be the impact of this wide usage of carbon nanomaterials on the environment in upcoming years. As ultimate disposal of these nanomaterials occurs in the aquatic ecosystems, it is very essential to assess its toxicological impact on it. Nevertheless, the risk assessment of carbon nanomaterials is a very intricate task. The reason is that a quantification of carbon nanomaterials in the carbon-rich environment is not at all easy. Hence, it is well evident that there is a necessity of the current research and development to investigate the potential aquatic toxicity of nanomaterials. Algae being an integral part of an aquatic ecosystem could play a role in monitoring tool for assessing the impact of carbon nanomaterial on the aquatic ecosystem. Seeking this correlation, this review focuses on the impact of carbon nanomaterials on algal flora. The mechanism effectually attributing the toxicity on algae is discussed, and future recommendations are made.

Keywords

Algae / Carbon nanomaterial / Nanotechnology / Nanoecotoxicology

Cite this article

Download citation ▾
Pallavi Saxena, Vishambhar Sangela, Shivendu Ranjan, Venkatesh Dutta, Nandita Dasgupta, Mahendra Phulwaria, Devendra Singh Rathore, Harish. Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora. Energy, Ecology and Environment, 2020, 5(4): 240-252 DOI:10.1007/s40974-020-00151-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol, 2016, 157: 141-161

[2]

Alfadul SM, Elneshwy AA. Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev, 2010, 10: 6

[3]

Arora A, Padua GW. Nanocomposites in food packaging. J Food Sci, 2010, 75: 43-49

[4]

Babu Maddinedi S, Mandal BK, Ranjan S, Dasgupta N. Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv, 2015, 5: 26727-26733

[5]

Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL. Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci, 2013, 30: 118-125

[6]

Baruah S, Dutta J. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett, 2009, 7(3): 191-204

[7]

Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes—the route toward applications. Science, 2002, 297(5582): 787-792

[8]

Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol, 2008, 86(3): 379-387

[9]

Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LH, Correa DS, Ferreira MD. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag, 2015, 3: 22-29

[10]

Blaise C, Gagné F, Ferard JF, Eullaffroy P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol, 2008, 23(5): 591-598

[11]

Bouchard D, Chang X, Chowdhury I. Heteroaggregation of multiwalled carbon nanotubes with sediments. Environ Nanotechnol Monit Manag, 2015, 4: 42-50

[12]

Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel EG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol, 2017, 49: 1-44

[13]

Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HYY, Kuniharu T, Javey A. Printed carbon nanotube electronics and sensor systems. Adv Mater, 2016, 28(22): 4397-4414

[14]

Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop, 2016, 19: 700-708

[15]

Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A. Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res, 2016, 23: 4149-4163

[16]

Dasgupta N, Ranjan S, Mishra D, Ramalingam C. Thermal co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem Biol Interact, 2018, 295: 109-118

[17]

De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535-539

[18]

Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM. Andreoni W. Carbon nanotubes. The physics of fullerene-based and fullerene-related materials. Physics and chemistry of materials with low-dimensional structures, 2000 Dordrecht Springer

[19]

Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ Sci Technol, 2012, 46(5): 2902-2910

[20]

Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Ma JD, Klaine SJ. The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem, 2010, 29(11): 2511-2518

[21]

Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol, 2007, 41(7): 2636-2642

[22]

Farkas J, Booth AM. Are fluorescence-based chlorophyll quantification methods suitable for algae toxicity assessment of carbon nanomaterials?. Nanotoxicology, 2017, 11(4): 569-577

[23]

Farré M, Sanchís J, Barceló D. Lofrano G, Libralato G, Brown J. Adsorption and desorption properties of carbon nanomaterials, the potential for water treatments and associated risks. Nanotechnologies for environmental remediation, 2017 Cham Springer 137-182

[24]

Freixa A, Acuna V, Sanchís J, Farre M, Barceló D, Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ, 2018, 619: 328-337

[25]

Future Market Inc (2014) The global market for metal oxide nanoparticles to 2025.  https://marketpublishers.com/report/metallurgy/metal_products/global-market-4-metal-oxide-nanoparticles-to-2020.html. Accessed 18 May 2019

[26]

Gao J, Llaneza V, Youn S, Silvera-Batista CA, Ziegler KJ, Bonzongo JCJ. Aqueous suspension methods of carbon-based nanomaterials and biological effects on model aquatic organisms. Environ Toxicol Chem, 2012, 31(1): 210-214

[27]

Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int, 2014, 2014: 4984020

[28]

Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM. Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol, 2016, 50(5): 2660-2668

[29]

Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlour SH, Goodarzi M, Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol, 2016, 46(2): 93-118

[30]

Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17(5): 315-325

[31]

Hazeem LJ, Bououdina M, Dewailly E, Slomianny C, Barras A, Coffinier Y, Boukherroub R. Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ Sci Pollut Res, 2017, 24(4): 4144-4152

[32]

Hwang M, Lee EJ, Kweon SY, Park MS, Jeong JY, Um JH, Kim SA, Han BS, Lee KH, Yoon HJ. Risk assessment principle for engineered nanotechnology in food and drug. Toxicol Res, 2012, 28: 73-79

[33]

Intrchom W, Thakkar M, Hamilton RF, Holian A, Mitra S. Effect of carbon nanotube-metal hybrid particle exposure to freshwater algae Chlamydomonas reinhardtii. Sci Rep, 2018, 8(1): 1-11

[34]

Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr, 2018, 58: 297-317

[35]

Kahru A, Ivask A. Mapping the dawn of nanoecotoxicological research. Acc Chem Res, 2012, 46(3): 823-833

[36]

Khanra A, Sangam S, Shakeel A, Suhag D, Mistry S, Rai MP, Mukherjee M. Sustainable growth and lipid production from Chlorella pyrenoidosa using N-doped carbon nanosheets: unravelling the role of graphitic nitrogen. ACS Sustain Chem Eng, 2018, 6(1): 774-780

[37]

Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA, 2011, 108(3): 1028-1033

[38]

Köhler A, Som C, Helland A, Gottschalk F. Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod, 2008, 16(8–9): 927-937

[39]

Kwok KW, Leung KM, Flahaut E, Cheng J, Cheng SH. Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine, 2010, 5(6): 951-961

[40]

Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H. Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ Sci Nano, 2018, 5: 48-63

[41]

Lawrence JR, Waiser MJ, Swerhone GDW, Roy J, Tumber V, Paule A, Korber DR. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environ Sci Pollut Res, 2016, 23(10): 10090-10102

[42]

LeCroy GE, Yang ST, Yang F, Liu Y, Fernando KS, Bunker CE, Hu Luo PG, Sun YP. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev, 2016, 320: 66-81

[43]

Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Weisman RB. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett, 2007, 7(9): 2650-2654

[44]

Lin D, Tian X, Wu F, Xing B. Fate and transport of engineered nanomaterials in the environment. J Environ Qual, 2010, 39(6): 1896-1908

[45]

Long Z, Ji J, Yang K, Lin D, Wu F. Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol, 2012, 46(15): 8458-8466

[46]

Lyon DY, Alvarez PJ. Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol, 2008, 42(21): 8127-8132

[47]

Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR. Potential environmental implications of nano-enabled medical applications: critical review. Environ Sci Process Impacts, 2013, 15: 123-144

[48]

Malina T, Maršálková E, Holá K, Tuček J, Scheibe M, Zbořil R, Maršálek B. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon, 2019, 155: 386-396

[49]

Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int, 2013, 2013: 1-15

[50]

Markovic Marijana, Andelkovic Ivan, Shuster Jeremiah, Janik Leslie, Kumar Anupama, Losic Dusan, McLaughlin Michael J.. Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. Chemosphere, 2020, 245: 125640

[51]

Markus AA, Parsons JR, Roex EW, de Voogt P, Laane RW. Gunther FA, de Voogt P. Modelling the release, transport and fate of engineered nanoparticles in the aquatic environment—a review. Reviews of environmental contamination and toxicology, 2016 Cham Springer 53-87

[52]

Mavrikou S, Kintzios S. Husen A, Iqbal M. Ecotoxicological effects of nanomaterials on growth, metabolism, and toxicity of nonvascular plants. Nanomaterials and plant potential, 2019 Cham Springer 393-426

[53]

Morris VJ. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol, 2011, 29: 509-516

[54]

Mortimer M, Holden PA. Marmiroli N, White JC, Song J. Fate of engineered nanomaterials in natural environments and impacts on ecosystems. Exposure to engineered nanomaterials in the environment, 2019 Amsterdam Elsevier 61-103

[55]

Mottier A, Mouchet F, Pinelli É, Gauthier L, Flahaut E. Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol, 2017, 46: 1-6

[56]

Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L. Characterization and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol, 2008, 87(2): 127-137

[57]

Neal AL. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?. Ecotoxicology, 2008, 17: 362-371

[58]

Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF. Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development. Nanotoxicology, 2008, 2(2): 88-97

[59]

Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C, Meinke MC, Vogt A, Hadam S, Lademann J, Rühl E. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol, 2015, 6: 263-280

[60]

Paschoalino MP, Marcone GP, Jardim WF. Nanomaterials and the environment. Quim Nova, 2010, 33(2): 421-430

[61]

Patel A, Tiwari S, Parihar P, Singh R, Prasad SM. Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK. Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. Nanomaterials in plants, algae and microorganisms, 2019 Cambridge Academic Press 23-42

[62]

Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS. Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov, 2016, 5: 10-21

[63]

Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Yuan X. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int, 2020, 134: 105298

[64]

Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandão BR. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol, 2014, 12(1): 15

[65]

Petersen EJ, Henry TB. Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes. Environ Toxicol Chem, 2012, 31(1): 60-72

[66]

Petersen EJ, Huang Q, Weber WJ. Relevance of octanol–water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environ Toxicol Chem, 2010, 29(5): 1106-1112

[67]

Pikula KS, Zakharenko AM, Chaika VV, Vedyagin AA, Orlova TY, Mishakov IV, Tsatsakis AM. Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae Heterosigma akashiwo. Environ Res, 2018, 166: 473-480

[68]

Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag, 2018, 9: 76-84

[69]

Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res, 2014, 16: 1-23

[70]

Ranjan S, Dasgupta N, Srivastava P, Ramalingam C. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B, 2016, 161: 472-481

[71]

Ranjan S, Dasgupta N, Chinnappan S, Ramalingam C, Kumar A. A novel approach to evaluate titanium dioxide nanoparticle–protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci, 2017, 87: 937-943

[72]

Rhiem S, Riding MJ, Baumgartner W, Martin FL, Semple KT, Jones KC, Schäffer A, Maes HM. Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environ Pollut, 2015, 196: 431-439

[73]

Sanchís J, Olmos M, Vincent P, Farre M, Barceló D. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol, 2016, 50(2): 961-969

[74]

Sardoiwala MN, Kaundal B, Choudhury SR. Toxic impact of nanomaterials on microbes, plants and animals. Environ Chem lett, 2018, 16(1): 147-160

[75]

Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K. Are carbon nanotube effects on green algae caused by shading and agglomeration?. Environ Sci Technol, 2011, 45(14): 6136-6144

[76]

Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol, 2013, 47(13): 7012-7019

[77]

Shende RC, Ramaprabhu S. Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems. Sol Energy Mater Sol Cells, 2016, 157: 117-125

[78]

Shi B, Su Y, Zhang L, Liu R, Huang M, Zhao S. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications. Biosens Bioelectron, 2016, 82: 233-239

[79]

Sobek A, Bucheli TD. Testing the resistance of single-and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Environ Pollut, 2009, 157(4): 1065-1071

[80]

Stark WJ. Nanoparticles in biological systems. Angew Chem Int Ed, 2011, 50: 1242-1258

[81]

Thakkar M, Mitra S, Wei L. Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta. J Nanomater, 2016, 2016: 8380491

[82]

Upadhyayula VK, Deng S, Mitchell MC, Smith GB. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ, 2009, 408(1): 1-1

[83]

Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F, Bortolamiol T, Baqué D, Gauthier L, Pinelli E. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “A sticky story”. Nanotoxicology, 2015, 9(2): 219-229

[84]

Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere, 2008, 73(7): 1121-1128

[85]

Wang F, Guan W, Xu L, Ding Z, Ma H, Ma A, Terry N. Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate. Appl Sci, 2019, 9(8): 1534

[86]

Wang Q, Li C, Wang Y, Que X. Phytotoxicity of graphene family nanomaterials and its mechanisms: a review. Front chem, 2019, 7: 292

[87]

Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol, 2010, 100(2): 194-201

[88]

Xiao A, Wang C, Chen J, Guo R, Yan Z, Chen J. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicol Environ, 2016, 133: 211-217

[89]

Yada RY, Buck N, Canady R, DeMerlis C, Duncan T, Janer G, Juneja L, Lin M, McClements DJ, Noonan G, Oxley J. Engineered nanoscale food ingredients: evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Compr Rev Food Sci Food Saf, 2014, 13: 730-744

[90]

Yao K, Lv X, Zheng G, Chen Z, Jiang Y, Zhu X, Cai Z. Effects of carbon quantum dots on aquatic environments: comparison of toxicity to organisms at different trophic levels. Environ Sci Technol, 2018, 52(24): 14445-14451

[91]

Youn S, Wang R, Gao J, Hovespyan A, Ziegler KJ, Bonzongo JCJ, Bitton G. Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology, 2012, 6(2): 161-172

[92]

Zhang L, Lei C, Chen J, Yang K, Zhu L, Lin D. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon, 2015, 83: 198-207

[93]

Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev, 2016, 45(3): 715-752

[94]

Zhang M, Wang H, Song Y, Huang H, Shao M, Liu Y, Kang Z. Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Appl Bio Mater, 2018, 1(3): 894-902

[95]

Zhang M, Wang H, Song Y, Huang H, Shao M, Liu Y, Li H, Kang Z. Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Appl Energy Mater, 2018, 1: 894-902

[96]

Zhang C, Chen X, Tan L, Wang J. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ Sci Pollut Res, 2018, 25(13): 13127-13133

[97]

Zhang M, Wang H, Liu P, Song Y, Huang H, Shao M, Kang Z. Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris. Environ Sci Nano, 2019, 6(11): 3316-3323

Funding

University Grants Commission(F.25-a/2013-14(BSR)/7-125/2007(BSR))

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/