Mesophilic bioleaching performance of copper, cobalt and nickel with emphasis on complex orebodies of the Democratic Republic of Congo: a review of dynamic interactions between solids loading, microbiota activity and growth
David Lukumu Bampole , Antoine-F Mulaba-Bafubiandi
Energy, Ecology and Environment ›› 2020, Vol. 5 ›› Issue (1) : 61 -83.
Mesophilic bioleaching performance of copper, cobalt and nickel with emphasis on complex orebodies of the Democratic Republic of Congo: a review of dynamic interactions between solids loading, microbiota activity and growth
The copper, cobalt and nickel ores are still currently mined in the world. Its complex mineralogy creates extraction challenges by means of conventional metallurgical methods. Meanwhile, dealing with mesophilic strains in leaching process requires a compromise between solid loading and microbiota activity and growth. That is why, the influence of solid loading with fine or coarse particulates, the cell disturbance during the metal–microbes interactions depending upon the influence of gangue nature as well as metallic ions concentration on bacterial tolerance and the chemical and biological pathways involved in bioleaching mechanism of complex ores are summarised in detail in this paper. The current trends in mechanism research and diverse discovered set of microbiota and bacterial population coupled with bacterial adaptation methods contribute to optimise and improve the metals leaching performance and knowledge. In addition, the different existing complex mineralogical structures elaborate a main indirect mechanism with two different transitory mechanisms, before metal is converted into metal sulphate as wealthily explained in this comprehensive review. More data for cost analysis concomitant with extraction efficiency of metals using mesophilic bioleaching process are needed. However, it does not mean that other options are excluded in order to set a bio-hydrometallurgical chain. In fact, to consider also the concentration and purification of the pregnant leaching solution via phase separation and solvent extraction will be helpful. This obeys to the idea of option trees, where possible options are then systematically gaged with respect to critical criteria.
Mesophilic bioleaching / Microbiota / Copper / Cobalt / Nickel / Sustainability / Environment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Bampole D-L, Mulaba-Bafubiandi A-F (2019) Bioleaching of chalcopyrite and pyritic chalcocite using indigenous mesophilic bacteria. M-tech Thesis, University of Johannesburg. Johannesburg, South Africa |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Bomberg M, Mäkinen J, Salo M, Arnold M, Koukkari P (2017) Rare earth elements recovery and sulphate removal from phosphogypsum wastewaters with sulphate reducing bacteria. In: 22nd International biohydrometallurgy symposium solid state phenomena, vol 262, pp 573–576 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
Jennings P-H, Mcandrew R-T, Stratigakos E-S (1968) A hydrometallurgical method for recovering selenium and tellurium from copper refinery slimes TMS paper selection, A 68-9 |
| [46] |
|
| [47] |
Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic microorganisms. In: Poole RK (ed) Principles of the magnetic methods in Geophysics. Academic Press, pp 201–255 |
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Kitobo W-S, Gaydardzhiev S, Frenay J, Ndala I (2009). Valorization and depollution of the rejections of Ancient Concentrator of Kipushi to Katanga in D.R. Congo. PhD Thesis, University of liege, Belgium |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
Kordosky G (2007) The copperbelt Africa—a renaissance in copper hydrometallurgy. In: IV, international copper hydrometallurgy workshop (Hydrocopper, 2007), 16–18 May, Vina del Mar, Chile, pp 1–54 |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
Loi G, Rossi G, Trois P (2006) “Reattore a tamburo rotante per idrometallurgia, bioidrometallurgia e trattamento delle acque di rifiuto per esercizio continuo” (Revolving barrel reactor for continuous operation for hydrometallurgy, biohydrometallurgy and water treatment), Italian Patent No. 0001329859; November 21 |
| [67] |
|
| [68] |
|
| [69] |
Monroy MG (1993) Bioleaching—refractory gold bearing sulphide ore cyanidation in devices of percolation: Behavior of the populations of Thiobacillus ferrooxidans and influence on mineralogy and operating conditions. University of Nancy 1, France |
| [70] |
|
| [71] |
|
| [72] |
Mulaba-Bafubiandi A-F, Bell DT (2005) Some aspects of laboratory flotation of Co–Cu minerals from mixed oxide ores. In: Third Southern African conference on base metals, south african institute of mining and metallurgy, vol 3, pp 191–199 |
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
Parker H (2016) Kamoa-Kakula project – Kakula 2016 Preliminary Economic Assessment. Internal report from Orewin IMC to Ivanhoe Mines, Janvier 2017 |
| [78] |
Pinches A, Chapman J-T, Riele T, Van Staden M (1988) The performance of bacterial leach reactors for the pre-oxidation of refractory gold bearing sulphide concentrates. In: Norris PR, Kelly DP (eds) Bio-hydrometallurgical proceedings, Science and Technology Letters. International Symposium Warwick 329-44, Kew, Survey |
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
Ross TJ (2011) Fuzzy logic with engineering applications, 3rd edn. Wiley, pp 100–116. ISBN: 97 8-0-470-74376-8 |
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
Scholtz N-J, Pandit A-B, Harrison S-T-L (1997) Effect of solids suspension on microbial cell disruption. In: Nienow A (ed) Bioreactor and bioprocess fluid dynamics, pp 199–215 |
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
/
| 〈 |
|
〉 |