Creating a global database “Nanomaterials in the soil environment”: future need for the terrestrial ecosystem

Sandhya Mishra , Harikesh Bahadur Singh , Xiaodong Yang

Energy, Ecology and Environment ›› 2019, Vol. 4 ›› Issue (6) : 271 -285.

PDF
Energy, Ecology and Environment ›› 2019, Vol. 4 ›› Issue (6) : 271 -285. DOI: 10.1007/s40974-019-00126-5
Original Article

Creating a global database “Nanomaterials in the soil environment”: future need for the terrestrial ecosystem

Author information +
History +
PDF

Abstract

The revolutionary nanotechnology has generated environment safety concerns due to accumulation and toxicity behavior of nanomaterials. Given the wide application of various nanomaterials in daily products of our life, their environmental release is exceedingly obvious. Moreover, soil is the major sink for nanomaterials after their intentional or inadvertent release into the environment. Enormous attempts have apparently been made to study the impact of nanomaterials in the soil environment. Besides that, our understanding is inadequate due to disparities among results and effects of nanomaterials ranging from lethal, sub-lethal, to non-toxic. Subsequently, interpreting the real potential of nanomaterials to affect the soil environment and associated ecological processes is a challenging task. The interactions of different nanomaterials within different soil environments are crucial to authenticate toxicity behavior. Correspondingly, a global perspective is required for a comprehensive understanding of the environmental impact of nanomaterials. Therefore, we propose the need for a global database of “Nanomaterials in the soil environment” based on the estimates of nanomaterials flow among the three major components, viz. soil, soil microbes, and plants. Since the soil ecosystem is the foundation for many ecological processes supporting aboveground plant community and humankind, there is a need for this global database to precisely address the environmental issues. We propose that the empirical data from this global database would be helpful in bridging the knowledge gaps in the right way. Moreover, through this challenging task, soil policy can be developed to regulate nanomaterials usage and to protect soil health and associated biodiversity.

Keywords

Nanomaterials / Soil / Soil microbes / Plants / Global database / Environmental safety

Cite this article

Download citation ▾
Sandhya Mishra, Harikesh Bahadur Singh, Xiaodong Yang. Creating a global database “Nanomaterials in the soil environment”: future need for the terrestrial ecosystem. Energy, Ecology and Environment, 2019, 4(6): 271-285 DOI:10.1007/s40974-019-00126-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I. Silver nanoparticles in soil–plant systems. J Nanopart Res, 2013, 15: 1896

[2]

Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ. Nanoparticles applied to plant science: a review. Talanta, 2015, 131: 693-705

[3]

Bae S, Hwang YS, Lee YJ, Lee SK. Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles. Environ Health Toxicol, 2013, 28: e2013006

[4]

Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL. Comparative phytotoxicity of ZnONPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ, 2015, 515: 60-69

[5]

Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res, 2012, 46(3): 854-862

[6]

Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell K. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci, 2015, 16(10): 24174-24193

[7]

Boxall AB, Tiede K, Chaudhry Q. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health?. Nanomedicine, 2007, 2(6): 919-927

[8]

Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to?. Environ Sci Eur, 2018, 30(1): 6

[9]

Caballero-Guzman A, Nowack B. A critical review of engineered nanomaterial release data: are current data useful for material flow modeling?. Environ Pollut, 2016, 213: 502-517

[10]

Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnsonc W, Anderson AJ. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ, 2012, 429: 215-222

[11]

Cao J, Feng Y, Lin X, Wang J. Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci, 2016, 4: 10

[12]

Chakravarty D, Erande MB, Late DJ. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric, 2015, 95(13): 2772-2778

[13]

Chavan S, Nadanathangam V. Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 2019, 9(3): 140

[14]

Chen J, Dou R, Yang Z, Wang X, Mao C, Gao X, Wang L. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology, 2016, 10(6): 818-828

[15]

Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci, 2018, 9: 1270

[16]

Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol, 2008, 42(12): 4583-4588

[17]

Chunjaturas W, Ferguson JA, Rattanapichai W, Sadowsky MJ, Sajjaphan K. Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA. World J Microbiol Biotechnol, 2014, 30: 2119-2124

[18]

Colman BP, Arnaout CL, Anciaux S, Gunsch C, Hochella MF, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE, 2013, 8: e57189

[19]

Cornelis G, DooletteMadeleine Thomas C, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D. Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J, 2012, 76(3): 891-902

[20]

Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol, 2014, 44(24): 2720-2764

[21]

De la Torre RR, Servin A, Hawthorne J, Xing B, Newman LA, Ma X, Chen G, White JC. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol, 2015, 49(19): 1866-11874

[22]

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun, 2016, 7: 10541

[23]

Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res, 2012, 14: 1-15

[24]

Doolette CL, Gupta VV, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ. Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS ONE, 2016, 11(8): e0161979

[25]

El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol, 2012, 27(1): 42-49

[26]

Fang J, Shan X-q, Wen B, Lin J-m, Owens G. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut, 2009, 157: 1101-1109

[27]

Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol, 2013, 47(16): 9496-9504

[28]

Fraceto LF, de Lima R, Oliveira HC, Ávila DS, Chen B. Future trends in nanotechnology aiming environmental applications. Energy Ecol Environ, 2018, 3(2): 69-71

[29]

Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE, 2013, 8(12): e84441

[30]

García-Gómez C, Fernández MD, García S, Obrador AF, Letón M, Babín M. Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environ Sci Pollut Res, 2018, 25(28): 28140-28152

[31]

Ge Y, Schimel JP, Holden PA. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol, 2012, 78(18): 6749-6758

[32]

Grün AL, Manz W, Kohl YL, Meier F, Straskraba S, Jost C, Drexel R, Emmerling C. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur, 2019, 31(1): 15

[33]

Grzybowski BA, Huck WT. The nanotechnology of life-inspired systems. Nat Nanotechnol, 2016, 11(7): 585

[34]

Hänsch M, Emmerling C. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soils Sci, 2010, 173: 554-558

[35]

He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 2016, 147: 195-202

[36]

He J, Wang W, Zhou D. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. Sci Total Environ, 2019, 648: 102-108

[37]

Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology, 2011, 20(1): 226-233

[38]

Holbrook RD, Murphy KE, Morrow JB, Cole KD. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol, 2008, 3(6): 352

[39]

Inshakova Elena, Inshakov Oleg. World market for nanomaterials: structure and trends. MATEC Web of Conferences, 2017, 129: 02013

[40]

Jiang F, Shen Y, Ma C, Zhang X, Cao W, Rui Y. Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLoS ONE, 2017, 12(5): e0178088

[41]

Jośko I, Oleszczuk P. Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation. Environ Sci Pollut Res, 2014, 21(17): 10215-10224

[42]

Juan W, Kunhui S, Zhang L, Youbin S. Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere, 2017, 27: 482-490

[43]

Judy JD, Unrine JM, Bertsch PM. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol, 2010, 45(2): 776-781

[44]

Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanopart Res, 2013, 15(6): 1692

[45]

Kibbey TC, Strevett KA. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere, 2019, 221: 703-707

[46]

Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F. The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ, 2015, 535: 54-60

[47]

Lee WM, Kim SW, Kwak JI, Nam SH, Shin YJ, An YJ. Research trends of ecotoxicity of nanoparticles in soil environment. Toxicol Res, 2010, 26(4): 253-259

[48]

Lee W-M, Kwak JI, An Y-J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 2012, 86: 491-499

[49]

Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol, 2013, 47(23): 13440-13448

[50]

Li L-Z, Zhou D-M, Peijnenburg WJGM, van Gestel CAM, Jin S-Y, Wang Y-J, Wang P. Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int, 2011, 37: 1098-1104

[51]

Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y. Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater, 2018, 1(3): 663-672

[52]

Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 2007, 150: 243-250

[53]

Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM. A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol, 2011, 6: 784-787

[54]

Lu C, Zhang C, Wen J, Wu G, Tao M. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci, 2002, 21(3): 168-171

[55]

Ma XM, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ, 2010, 408: 3053-3061

[56]

Ma Y, Yao Y, Yang J, He X, Ding Y, Zhang P, Zhang J, Wang G, Xie C, Luo W, Zhang J. Trophic transfer and transformation of CeO2 nanoparticles along a terrestrial food chain: influence of exposure routes. Environ Sci Technol, 2018, 52(14): 7921-7927

[57]

MacLean AM, Bravo A, Harrison MJ. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell, 2017, 29: 2319-2335

[58]

Manter DK, Delgado JA, Blackburn HD, Harmel D, de León AAP, Honeycutt CW. Opinion: why we need a national living soil repository. PNAS, 2017, 114(52): 13587-13590

[59]

Margenot AJ, Rippner DA, Dumlao MR, Nezami S, Green PG, Parikh SJ, McElrone AJ. Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant Soil, 2018, 431(1–2): 333-345

[60]

McKee MS, Filser J. Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano, 2016, 3(3): 506-533

[61]

McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ Toxicol Chem, 2018, 37(10): 2619-2632

[62]

Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Safe, 2013, 88: 48-54

[63]

Mishra S, Singh HB. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol, 2015, 99: 1097-1107

[64]

Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB. Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci, 2017, 8: 471

[65]

Mishra S, Singh BR, Naqvi AH, Singh HB. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep, 2017, 7: 45154

[66]

Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MG. Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol, 2016, 14(1): 36

[67]

Montanarella L. Agricultural policy: govern our soils. Nat News, 2015, 528(7580): 32

[68]

Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol, 2008, 42(12): 4447-4453

[69]

Nanomaterials Market—Global Opportunity Analysis and Industry Forecast, 2014–2022. Allied Market Research, September 2016

[70]

PEN (2013) The Project on emerging nanotechnologies. http://www.nanotechproject.org/

[71]

Qian H, Peng X, Han X, Ren J, Sun L, Fu Z. Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci, 2013, 25: 1947-1956

[72]

Raffi MM, Husen A. Husen A, Iqbal M. Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment. Nanomaterials and plant potential, 2019 Basel Springer 529-552

[73]

Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE Jr, Lowry GV. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol, 2012, 46(13): 6992-7000

[74]

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci, 2016, 7: 815

[75]

Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol, 2017, 15(1): 33

[76]

Schlich K, Hund-Rinke K. Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut, 2015, 196: 321-330

[77]

Servin AD, Pagano L, Castillo-Michel H, De la Torre-Roche R, Hawthorne J, Hernandez-Viezcas JA, Loredo-Portales R, Majumdar S, Gardea-Torresday J, Dhankher OP, White JC. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicol, 2017, 11(1): 98-111

[78]

Shah V, Collins D, Walker VK, Shah S. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett, 2014, 9(2): 024001

[79]

Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol, 2012, 167: 2225-2233

[80]

Shin Y-J, Kwak JI, An Y-J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88: 524-529

[81]

Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soils Sci Soc Am J, 2011, 75: 365-377

[82]

Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A. Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater, 2015, 283: 529-535

[83]

Simonin M, Cantarel AAM, Crouzet A, Gervaix J, Martins JMF, Richaume A. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front Microbiol, 2018, 9: 3102

[84]

Sun TY, Gottschalk F, Hungerbuhler K, Nowack B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut, 2014, 185: 69-76

[85]

Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M. Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician, 2013, 5(4): 706-712

[86]

Thunugunta T, Reddy AC, Seetharamaiah SK, Hunashikatti LR, Chandrappa SG, Kalathil NC, Reddy LRDC. Impact of Zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol, 2018, 12(6): 706-713

[87]

Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem, 2012, 31(8): 1679-1692

[88]

Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol, 2012, 46(17): 9753-9760

[89]

VandeVoort AR, Arai Y. Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol, 2012, 8(6): 358-364

[90]

Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE, 2013, 8(7): e68752

[91]

Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol, 2014, 171(13): 1142-1148

[92]

Velicogna JR, Ritchie EE, Scroggins RP, Princz JI. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicol, 2016, 10(8): 1144-1151

[93]

Velicogna JR, Schwertfeger DM, Jesmer AH, Scroggins RP, Princz JI. The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil. NanoImpact, 2017, 6: 11-18

[94]

Waalewijn-Kool PL, Rupp S, Lofts S, Svendsen C, van Gestel CA. Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicol Environ Saf, 2014, 108: 9-15

[95]

Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol, 2013, 47: 5442-5449

[96]

Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM. Silver nanoparticles entering soils via the wastewater–sludge–soil pathway poses low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol, 2016, 50(15): 8274-8281

[97]

Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci, 2016, 6: 1243

[98]

Wang XP, Li QQ, Pei ZM, Wang SC. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant, 2018, 62(4): 801-808

[99]

Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol, 2011, 6(1): 65

[100]

Wirth SM, Lowry GV, Tilton RD. Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol, 2012, 46: 12687-12696

[101]

Xie P, Yang ST, He T, Yang S, Tang XH. Bioaccumulation and toxicity of carbon nanoparticles suspension injection in intravenously exposed mice. Int J Mol Sci, 2017, 18(12): 2562

[102]

Yang Y, Wang J, Xiu Z, Alvarez PJ. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem, 2013, 32(7): 1488-1494

[103]

Yang YF, Lin YJ, Liao CM. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. Int J Nanomed, 2017, 12: 4607

[104]

Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Cao W, Xing B. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem, 2018, 66(11): 2589-2597

[105]

Yasur J, Rani P. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res, 2013, 20: 8636-8648

[106]

Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE, 2012, 7(10): e47674

[107]

Zhao X, Yu M, Xu D, Liu A, Hou X, Hao F, Long Y, Zhou Q, Jiang G. Distribution, bioaccumulation, trophic transfer, and influences of CeO2 nanoparticles in a constructed aquatic food web. Environ Sci Technol, 2017, 51(9): 5205-5214

[108]

Zheng L, Hong FS, Lu SP, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res, 2005, 104: 8391

Funding

National Natural Science Foundation of China(31700457)

CAS President's International Fellowship Initiative (PIFI)(2019PC0095)

China Postdoctoral Science Foundation(2018M631112)

Yunnan Applied Basic Research Projects(2016FA017)

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/