Nanotoxicology assessment in complementary/alternative models

Daiana Silva Ávila , Juliana Fredo Roncato , Maurício Tavares Jacques

Energy, Ecology and Environment ›› 2018, Vol. 3 ›› Issue (2) : 72 -80.

PDF
Energy, Ecology and Environment ›› 2018, Vol. 3 ›› Issue (2) : 72 -80. DOI: 10.1007/s40974-018-0086-y
Original Research Article

Nanotoxicology assessment in complementary/alternative models

Author information +
History +
PDF

Abstract

Despite all the applications of nanotechnology, limited data are available on their environmental and health risks. Many nanomaterials have been developed; however, their safety evaluation is not performed at the same speed. Toxicity can occur at different trophic levels (microorganisms, invertebrates, and vertebrates), and because of that, alternative/complementary models have been successfully employed. This mini-review aims to report some studies that have successfully used different alternative models to assess nanotoxicology and to stimulate their use by other groups of this important field. This will provide more information about nanomaterials and also to evoke studies to improve formulations.

Keywords

Nanotoxicology / Caenorhabditis elegans / Drosophila melanogaster / Danio rerio / Aretmia salina / Daphnia magna

Cite this article

Download citation ▾
Daiana Silva Ávila, Juliana Fredo Roncato, Maurício Tavares Jacques. Nanotoxicology assessment in complementary/alternative models. Energy, Ecology and Environment, 2018, 3(2): 72-80 DOI:10.1007/s40974-018-0086-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agunbiade FO, Moodley B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system KwaZulu-Natal, South Africa. Environ Monit Assess, 2014, 186: 7273-7291

[2]

Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol, 2010, 242: 263-269

[3]

Araj Salah-Eddin A, Salem NM, Ghabeish IH, Awwad AM. Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater, 2015

[4]

Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis PloS one, 2013, 8: e53186

[5]

Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci Process Impacts 2013:https://doi.org/10.1039/c1032em30540b https://doi.org/10.1039/c2em30540b

[6]

Ates M, Demir V, Arslan Z, Daniels J, Farah IO, Bogatu C. Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation toxicity and depuration in Artemia salina larvae. Environ Toxicol, 2015, 30: 109-118

[7]

Avanesian A, Semnani S, Jafari M. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?. Drug Discov Today, 2009, 14: 761-766

[8]

Avila D, Helmcke K, Aschner M. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol, 2012, 31: 236-243

[9]

Barros SM A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys, 2016, 596: 22-42

[10]

Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 2008, 17: 387-395

[11]

Bianchini MC Peumus boldus (Boldo) aqueous extract present better protective effect than boldine against manganese-induced toxicity in D. melanogaster. Neurochem Res, 2016, 41: 2699-2707

[12]

Borm PJ The potential risks of nanomaterials: a review carried out for ECETOC Particle and fibre toxicology, 2006, 3: 11

[13]

Boverhof DR, David RM. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem, 2010, 396: 953-961

[14]

Chakraborty C, Sharma AR, Sharma G, Lee S-S. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol, 2016, 14: 65

[15]

Charao MF Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int J Nanomed, 2015, 10: 5093-5106

[16]

Chen T-H, Lin C-Y, Tseng M-C. Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull, 2011, 63: 303-308

[17]

Chen H, Roco MC, Son J, Jiang S, Larson CA, Gao Q. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. Journal of Nanoparticle Research, 2013, 15: 1951

[18]

Chen H, Wang B, Feng W, Du W, Ouyang H, Chai Z, Bi X. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology, 2015, 9: 302-312

[19]

Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA. Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci, 2016, 17: 36

[20]

Chi-Hsin H, Zhi-Hong W, Chan-Shing L, Chiranjib C. The Zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovascular Res, 2007, 4: 111-120

[21]

Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF. Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol, 2014, 147: 129-139

[22]

Contado C. Nanomaterials in consumer products: a challenging analytical problem Frontiers. Chemistry, 2015

[23]

Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem, 2014, 33: 2716-2723

[24]

Cozzens S, Cortes R, Soumonni O, Woodson T. Nanotechnology and the millennium development goals: water, energy, and agri-food. J Nanopart Res, 2013, 15: 2001

[25]

Curtis J, Greenberg M, Kester J, Phillips S, Krieger G. Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev, 2006, 25: 245-260

[26]

Das S, Debnath N, Patra P, Datta A, Goswami A. Nanoparticles influence on expression of cell cycle related genes in Drosophila: a microarray-based toxicogenomics study. Toxicol Environ Chem, 2012, 94: 952-957

[27]

Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev, 2012, 64: 129-137

[28]

Fan W, Cui M, Liu H, Wang C, Shi Z, Tan C, Yang X. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut, 2011, 159: 729-734

[29]

Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, Egea MA, Garcia ML, Souto SB, Souto EB. A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol, 2013, 18: 545-549

[30]

Farré M, Gajda-Schrantz K, Kantiani L, Barceló D. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem, 2009, 393: 81-95

[31]

Galdiero E Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomed, 2017, 12: 2717-2731

[32]

Gambardella C Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses. Environ Monit Assess, 2014, 186: 4249-4259

[33]

Gorth DJ, Rand DM, Webster TJ. Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomed, 2011, 6: 343-350

[34]

Guarnieri DJ, Heberlein U. Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol, 2003, 54: 199-228

[35]

Hadrup N, Sharma AK, Poulsen M, Nielsen E. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—A review. Regul Toxicol Pharmacol RTP, 2015, 72: 216-221

[36]

Jacques MT, Oliveira JL, Campos EV, Fraceto LF, Avila DS. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf, 2017, 139: 245-253

[37]

Jang S, Jang H, Lee Y, Suh D, Baik S, Hong BH, Ahn JH. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology, 2010, 21: 425201

[38]

Johnston H Engineered nanomaterial risk lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol, 2013, 43: 1-20

[39]

Jorgensen EM (2005) Gaba WormBook : the online review of C elegans biology:1-13 https://doi.org/10.1895/wormbook.1.14.1

[40]

Juch H, Nikitina L, Debbage P, Dohr G, Gauster M. Nanomaterial interference with early human placenta: Sophisticated matter meets sophisticated tissues. Reprod Toxicol, 2013, 41: 73-79

[41]

Jung SK Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol, 2015, 49: 2477-2485

[42]

Kah M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front Chem, 2015

[43]

Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol, 2006, 36: 189-217

[44]

Libralato G. The case of Artemia spp. in nanoecotoxicology. Mar Environ Res, 2014, 101: 38-43

[45]

Lin S, Zhao Y, Nel AE, Lin S. Zebrafish: an in vivo model for nano EHS studies. Small (Weinheim an der Bergstrasse, Germany), 2013, 9: 1608-1618

[46]

Liu X, Vinson D, Abt D, Hurt RH, Rand DM. Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol, 2009, 43: 6357-6363

[47]

Liu B, Campo EM, Bossing T. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms. PLoS ONE, 2014, 9: e88681

[48]

Mackay TF, Anholt RR. Of flies and man: Drosophila as a model for human complex traits. Annu Rev Genomics Hum Genet, 2006, 7: 339-367

[49]

Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube’s toxicology. Nano Rev, 2013

[50]

Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM. Long-term Lethal Toxicity Test with the Crustacean Artemia franciscana. J Vis Exp JoVE:3790, 2012

[51]

Miao W, Zhu B, Xiao X, Li Y, Dirbaba NB, Zhou B, Wu H. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquat Toxicol, 2015, 161: 117-126

[52]

Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic detoxification in Drosophila Genes & development, 2011, 25: 1796-1806

[53]

Mora M, Bonilla E, Medina-Leendertz S, Bravo Y, Arcaya JL. Minocycline increases the activity of superoxide dismutase and reduces the concentration of nitric oxide, hydrogen peroxide and mitochondrial malondialdehyde in manganese treated Drosophila melanogaster. Neurochem Res, 2014, 39: 1270-1278

[54]

Moraes BS, Vieira SM, Salgueiro WG, Michels LR, Colome LM, Avila DS, Haas SE. Clozapine-loaded polysorbate-coated polymeric nanocapsules: physico-chemical characterization and toxicity evaluation in Caenorhabditis elegans model. J Nanosci Nanotechnol, 2016, 16: 1257-1264

[55]

Moreno-González R, Campillo JA, García V, León VM. Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere, 2013, 92: 247-257

[56]

Nel AE Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8: 543-557

[57]

Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut, 2007, 150: 5-22

[58]

Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ Pollut, 2006, 144: 453-462

[59]

Oberdorster G Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2005, 2: 8

[60]

Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 2007, 1: 2-25

[61]

Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem, 2013, 20: 772-781

[62]

Ong C, Yung LY, Cai Y, Bay BH, Baeg GH. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology, 2015, 9: 396-403

[63]

Ozkan Y, Altinok I, Ilhan H, Sokmen M. Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: toxicity morphological changes, uptake and depuration. Bull Environ Contam Toxicol, 2016, 96: 36-42

[64]

Pal A, He Y, Jekel M, Reinhard M. Gin KY-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle Environment International, 2014, 71: 46-62

[65]

Panahifar A, Mahmoudi M, Doschak MR. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity. ACS Appl Mater Interfaces, 2013, 5: 5219-5226

[66]

Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 2011, 63: 411-436

[67]

Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of post-embryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn Off Publ Am Assoc Anat, 2009, 238: 2975-3015

[68]

Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL. Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater, 2011, 186: 1-15

[69]

Posgai R, Ahamed M, Hussain SM, Rowe JJ, Nielsen MG. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ, 2009, 408: 439-443

[70]

Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere, 2011, 85: 34-42

[71]

Powell MC, Kanarek MS. Nanomaterial health effects–part 1: background and current knowledge. WMJ Off Publ State Med SocWis, 2006, 05: 16-20

[72]

Rand MD, Montgomery SL, Prince L, Vorojeikina D. Developmental toxicity assays using the Drosophila model. Curr Protocols Toxicol, 2014, 59(1): 12

[73]

Rui Q, Zhao Y, Wu Q, Tang M, Wang D. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere, 2013, 93: 2289-2296

[74]

Samaee S-M, Rabbani S, Jovanović B, Mohajeri-Tehrani MR, Haghpanah V. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf, 2015, 116: 121-128

[75]

Savolainen K Nanosafety in Europe 2015–2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations, 2013 Helsinki EDITA

[76]

Schindler DW. Detecting Ecosystem Responses to Anthropogenic Stress. Can J Fish Aquat Sci, 1987, 44: s6-s25

[77]

Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res, 2008, 15: 394-404

[78]

Schuler RL, Hardin BD, Niemeier RW. Drosophila as a tool for the rapid assessment of chemicals for teratogenicity. Teratog Carcinog Mutagen, 1982, 2: 293-301

[79]

Scown TM, van Aerle R, Tyler CR. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment?. Crit Rev Toxicol, 2010, 40: 653-670

[80]

Stewart AM, Grossman L, Nguyen M, Maximino C, Rosemberg DB, Echevarria DJ, Kalueff AV. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. Aquat Toxicol, 2014, 156: 269-273

[81]

Strähle U Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol, 2012, 33: 128-132

[82]

Sun TY, Gottschalk F, Hungerbühler K, Nowack B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut, 2014, 185: 69-76

[83]

Tan C, Wang W-X. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut, 2014, 186: 36-42

[84]

Tejeda-Benitez L, Olivero-Verbel J. Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol, 2016, 237: 1-35

[85]

Thomaidi VS, Stasinakis AS, Borova VL, Thomaidis NS. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. J Hazard Mater, 2015, 283: 740-747

[86]

Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol, 2012, 155: 269-274

[87]

Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J, Avramescu ML. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int, 2014, 21: 11823-11831

[88]

Vanhaecke P, Persoone G, Claus C, Sorgeloos P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol Environ Saf, 1981, 5: 382-387

[89]

Vecchio G. A fruit fly in the nanoworld: once again Drosophila contributes to environment and human health. Nanotoxicology, 2015, 9: 135-137

[90]

Vega-Alvarez S, Herrera A, Rinaldi C, Carrero-Martinez FA. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment. Int J Nanomed, 2014, 9: 2031-2041

[91]

Wang J Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere, 2011, 83: 461-467

[92]

Wu Q Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 2013, 90: 1123-1131

[93]

Xia G, Liu T, Wang Z, Hou Y, Dong L, Zhu J, Qi J. The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artif Cells Nanomed Biotechnol, 2016, 44: 1116-1121

[94]

Yang L Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol, 2007, 8: R227-R227

[95]

Yang Y, Zhang C, Hu Z. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Processes Impacts, 2013, 15: 39-48

[96]

Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A, 2008, 43: 278-284

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico(304123/2015-3)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(Master Schollarship)

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul(PRONEM- Rede Gaúcha de Métodos Alternativos)

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/