Thermal fatigue characteristics of materials used in aerospace structures

Eyüp Yeter

Energy, Ecology and Environment ›› 2018, Vol. 3 ›› Issue (1) : 24 -31.

PDF
Energy, Ecology and Environment ›› 2018, Vol. 3 ›› Issue (1) : 24 -31. DOI: 10.1007/s40974-017-0061-z
Original Article

Thermal fatigue characteristics of materials used in aerospace structures

Author information +
History +
PDF

Abstract

In this study, thermal fatigue characteristics of materials used in aerospace structures have been investigated. A new algorithm developed under the finite element analysis software ANSYS is used to determine thermal fatigue characteristics of the specific structures. Safety factor distribution of thin plate with two boundary conditions is given, and associated results are compared. The circular holes are also made in the structure in order to see the effects of nonlinearities, and the distribution of safety factors is obtained and their results are compared as well.

Keywords

Thermal fatigue / Finite element analysis / Al alloys / Safety factor

Cite this article

Download citation ▾
Eyüp Yeter. Thermal fatigue characteristics of materials used in aerospace structures. Energy, Ecology and Environment, 2018, 3(1): 24-31 DOI:10.1007/s40974-017-0061-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agbadua SA, Mgbemena CO, Mgbemena CE, Chima LO. Thermal cycling effects on the fatigue behaviour of low carbon steel. J Miner Mater Charact Eng, 2011, 10(14): 1345

[2]

Ahlborn K. Durability of carbon fibre reinforced plastics with thermoplastic matrices under cyclic mechanical and cyclic thermal loads at cryogenic temperatures. Cryogenics, 1991, 31(4): 257-260

[3]

Bechel Vernon T, Kim Ran Y. Damage trends in cryogenically cycled carbon/polymer composites. Compos sci technol, 2004, 64(12): 1773-1784

[4]

Bhattachar VS. Thermal fatigue behaviour of nickel-base superalloy 263 sheets. Int J Fatigue, 1995, 17(6): 407-413

[5]

Concer D, Woellner N, Marcondes PVP. Approach to the prediction of thermal fatigue of aluminum high pressure die casting (AISI H13) using the Basquin equation and finite elements. J Achiev Mater Manuf Eng, 2012, 55(2): 439-445

[6]

Deteresa SJ, Nicolais L. The contribution of thermal stresses to the failure of Kevlar fabric composites. Polym Compos, 1988, 9(3): 192-197

[7]

Eggers H, Hartung W, Knaak S. Damage in carbon fibre reinforced epoxy after thermal cycling and T-fatigue loading. Cryogenics, 1991, 31(4): 265-268

[8]

Ferdinand PB, Russell E, John J Jr, David DM. Mechanics of materials, 2009 5 New York McGraw-Hill press

[9]

Fissolo A, Marini B, Nais G, Wident P. Thermal fatigue behaviour for a 316 L type steel. J Nucl Mater, 1996, 233: 156-161

[10]

Haddar N, Fissolo A, Maillot V. Thermal fatigue crack networks: an computational study. Int J Solids Struct, 2005, 42(2): 771-788

[11]

Jacobs PM, Simpson M, Jones FR. Generation of thermal strains in carbon fibre-reinforced bismaleimide (PMR-15) composites: part 2: the effect of volatiles. Composites, 1991, 22(2): 99-104

[12]

Kern KT, Long ER Jr, Long S. Effects of electron radiation and thermal cycling on sized and unsized carbon fiber-polyetherimide composites. Polym Prepr, 1990, 31(1): 611-612

[13]

Lafarie-Frenot MC, Rouquie S, Ho NQ, Bellenger V. Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling. Compos A Appl Sci Manuf, 2006, 37(4): 662-671

[14]

Lo YJ, Liu CH, Hwang DG, Chang JF, Chen JC, Chen WY, Hsu SE. High-temperature behaviors of an innovative polymeric matrix composite. In high temperature and environmental effects on polymeric composites, 1993 Pennsylvania ASTM International

[15]

Moon Jung-Ho, Ha Tae Kwon. Thermal fatigue behavior of austenitic stainless steels. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng, 2014, 8(5): 394-397

[16]

Persson A, Hogmark S, Bergström J. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int J Fatigue, 2004, 26(10): 1095-1107

[17]

Persson A, Hogmark S, Bergström J. Thermal fatigue cracking of surface engineered hot work tool steels. Surf Coat Technol, 2005, 191(2): 216-227

[18]

Piekarski B (2007) The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel. 7:4–9

[19]

Robertson C, Fivel MC, Fissolo A. Dislocation substructure in 316 L stainless steel under thermal fatigue up to 650 K. Mater Sci Eng A, 2001, 315(1): 47-57

[20]

Simpson M, Jacobs PM, Jones FR. Generation of thermal strains in carbon fibre-reinforced bismaleimide (PMR-15) composites: part 1: the determination of residual thermal strains in cross-ply laminates. Composites, 1991, 22(2): 89-97

[21]

Simpson M, Jacobs PM, Jones FR. Generation of thermal strains in carbon fibre-reinforced bismaleimide (PMR-15) composites: part 3: a simultaneous thermogravimetric mass spectral study of residual volatiles and thermal microcracking. Composites, 1991, 22(2): 105-112

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/