Integration of wind into running vehicles to meet its total energy demand
Md. Faruque Hossain , Nowhin Fara
Energy, Ecology and Environment ›› 2017, Vol. 2 ›› Issue (1) : 35 -48.
Integration of wind into running vehicles to meet its total energy demand
Massive development in transportation sectors has accelerated fossil fuel energy consumption and greenhouse gas emissions from vehicles account for nearly 30% of global warming. We need clean energy for transportation sectors to meet their energy demand and avoid global warming. In this study, a wind energy system model was developed by integrating advanced technological and mathematical aspects to obtain a potential solution for the total energy demand of transportation sectors. Detailed analysis of the theoretical wind energy systems was modeled by a series of mathematical equations that were then proposed for use in transportation sectors to naturally meet their energy demand. To better explain this technology and its application in the transportation sectors, a sample experimental model of a car was also described as a hypothetical experiment. Interestingly, both the theoretical modeling and experimental analysis of the car confirm that a turbine can be a promising tool to utilize wind energy to generate electricity from self-renewing resources to power the car; importantly, wind energy is clean and globally abundant. The proposed wind energy system could be an innovative large-scale technology in energy science that can enable vehicles that produce energy from the wind when the vehicle is in motion, thus meeting 100% of the vehicle’s energy demand.
Natural air / Turbine modeling / Running vehicle / Energy conversion / Powering vehicle
| [1] |
Abdullah MA, Yatim AHM, Chee Wei T (2011) A study of maximum power point tracking algorithms for wind energy system. In: Proceedings of IEEE first conference on clean energy and technology (CET), pp 321–326 |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
E.W.E Association (2012) Wind directions-the European wind industry magazine, 31(1) |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Slootweg JG (2005) Reduced order modeling of wind turbines. Wind power in power systems. Wiley, pp 555–585 |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
/
| 〈 |
|
〉 |