Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination

Pardeep Singh , Rishikesh Singh , Anwesha Borthakur , Pratap Srivastava , Neha Srivastava , Dhanesh Tiwary , Pradeep Kumar Mishra

Energy, Ecology and Environment ›› 2016, Vol. 1 ›› Issue (3) : 131 -140.

PDF
Energy, Ecology and Environment ›› 2016, Vol. 1 ›› Issue (3) : 131 -140. DOI: 10.1007/s40974-016-0009-8
Research Article

Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination

Author information +
History +
PDF

Abstract

The extensive use of nanoparticles under different industrial processes and their release into the environment are of major concerns in the present global scenario. In the present study, the effects of activated carbon-based TiO2 (AC-TiO2) nano-composite on the seed germination of Solanum lycopersicum (tomato) and Vigna radiata (mungbean) were investigated. The size of nanoparticles used in the study ranged from 30 to 50 nm, and their concentrations were from 0 to 500 mg L−1. The composites were synthesized by sol–gel method and further characterized by scanning electron microscopy, Energy-dispersive X-rays spectroscopy (EDX), Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction to investigate all the surface structural and chemical properties of AC-TiO2 nano-composite. The results showed that increase in nano-composite concentration improves the germination rate and reduces germination time up to a certain concentration. Therefore, employing AC-TiO2 nano-composites in suitable concentration may promote the seed germination and also reduce the germination time in Solanum lycopersicum and Vigna radiata. Further, it may help to understand the interface of TiO2 nanoparticles with the environment and agriculture before its application to the field.

Keywords

Activated carbon–TiO2 / Nano-composite / Root elongation / Seed germination

Cite this article

Download citation ▾
Pardeep Singh, Rishikesh Singh, Anwesha Borthakur, Pratap Srivastava, Neha Srivastava, Dhanesh Tiwary, Pradeep Kumar Mishra. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy, Ecology and Environment, 2016, 1(3): 131-140 DOI:10.1007/s40974-016-0009-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arora AK, Rajalakshmi M, Ravindran TR, Sivasurbramanian V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J Raman Spectrosc, 2007, 38: 604-617

[2]

Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci, 2012, 7: 4871-4888

[3]

Bai CL. Ascent of nanoscience in China. Science, 2005, 309: 61-63

[4]

Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir, 2005, 21: 1931-1936

[5]

Brumfiel G. Nanotechnology: a little knowledge. Nature, 2003, 424: 246-248

[6]

Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL. Nanotechnology: a new frontier in food science. Food Technol, 2003, 57: 24-29

[7]

Castiglione MR, Giorgetti L, Geri C, Cremonini R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res, 2011, 13(6): 2443-2449

[8]

Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere, 2013, 90: 1083-1090

[9]

Cuesta P, Dhamelincourt J, Laureyns A, Martinez-Alonso JM, Tasc D. Raman microprobe studies on carbon materials. Carbon, 1994, 32: 523-1532

[10]

Dawson NG. Sweating the small stuff, environmental risk and nanotechnology. BioSci, 2008, 58: 690

[11]

Dehkourdi EH, Mosavi M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res, 2013, 155: 283-286

[12]

Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res, 2012, 146: 101-106

[13]

Feizi H, Kamali M, Jafari L, Moghaddam PR. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 2013, 91: 506-511

[14]

García A, Espinosa R, Delgado L, Casals E, Gonzalez E, Puntes V, Barata C, Font X, Sanchez A. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 2011, 269: 136-141

[15]

Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci, 2011, 108(41): 16968-16973

[16]

Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 2011, 83(4): 510-516

[17]

Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit, 2011, 13: 1145-1155

[18]

Haghighi M, da Silva JAT. The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol, 2014, 17(4): 221-227

[19]

Hema M, Arasi AY, Tamilselvi P, Anbarasan R. Titania nanoparticles synthesized by sol–gel technique. Chem Sci Trans, 2013, 2: 239-245

[20]

Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effects of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res, 2005, 105: 269-279

[21]

Horie Y, Taya M, Tone S. Effect of cell adsorption on photosterilization of Escherichia coli over titanium dioxide-activated charcoal granules. J Chem Eng, 1998, 31: 922-929

[22]

Hruby M, Cigler P, Kuzel S. Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr, 2002, 25: 577-598

[23]

Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett, 2014, 9: 1-24

[24]

Hyun CC, Young MJ, Seung BK. Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc, 2005, 37: 33-38

[25]

Inoue H, Matsuyama T, Liu BJ, Sakata T, Mori H, Yoneyama H. Photocatalytic activities for carbon dioxide reduction of TiO2 microcrystals prepared in SiO2 matrices using a sol–gel method. Chem Lett, 1994, 3: 653-656

[26]

Jośko I, Oleszczuk P. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere, 2013, 92: 91-99

[27]

Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ, 2008, 400(1): 396-414

[28]

Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth (retracted article. see, vol. 6, pp. 7541, 2012). ACS Nano, 2009, 3: 3221-3227

[29]

Kubo M, Fukuda H, Chua XJ, Yonemoto T. Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon. Ind Eng Chem Res, 2007, 46: 699-704

[30]

Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectro Acta A Mol Biomol Spectrosc, 2012, 90: 173-176

[31]

Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 2007, 150: 243-250

[32]

Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ, 2010, 408: 3053-3061

[33]

Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2010, 78: 273-279

[34]

Mattle MJ, Thampi KR. Photocatalytic degradation of Remazol Brilliant Blue® by sol–gel derived carbon-doped TiO2. Appl Catal B Environ, 2013, 140–141: 348-355

[35]

Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB. Safe handling of nanotechnology. Nature, 2006, 444: 267-269

[36]

Mushtaq YK. Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health Part A Tox Hazard Subst Environ Eng, 2011, 46: 1732-1735

[37]

NAAS (2013) Nanotechnology in agriculture: Scope and Current Relevance. Policy paper no. 63. National Academy of Agricultural Sciences, New Delhi

[38]

Ouyang K, Xie S, Ma XO. Photocatalytic activity of TiO2 supported on multi-walled carbon nanotubes under simulated solar irradiation. Ceram Int, 2013, 39: 7531-7536

[39]

Rejeski D, Lekas D. Nanotechnology field observations: scouting the new industrial west. J Clean Prod, 2008, 16: 1014-1017

[40]

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem, 2011, 59: 3485-3498

[41]

Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology, 2001 Boston Kluwer 3-4

[42]

Šćepanović MJ, Grujić-Brojčin M, Dohčević-Mitrović ZD, Popović ZV. Characterization of anatase TiO2 nanopowder by variable-temperature raman spectroscopy. Sci Sinter, 2009, 41: 67-73

[43]

Service RF Is nanotechnology dangerous. Science, 2000, 290: 1526-1527

[44]

Service RF Nanomaterials show signs of toxicity. Science, 2003, 300: 243

[45]

Singh P, Vishnu MC, Sharma KK, Singh R, Madhav S, Tiwary D, Mishra PK. Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic and photosonocatalytic reactor. Desalin Water Treat, 2015

[46]

Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotox Environ Saf, 2013, 93: 60-67

[47]

Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ. Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res, 2013, 155: 93-103

[48]

Srivastava N, Singh J, Srivastava M, Ramteke PW, Mishra PK. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour Technol, 2015, 183: 262-266

[49]

Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW. Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy, 2015, 1(1): 55-63

[50]

Sun J, Qiao L, Sun S, Wang G. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J Hazard Mater, 2008, 155: 312-319

[51]

U.S. Environmental Protection Agency (2010) Emerging contaminants-nanoparticles. www3.epa.gov/region9/mediacenter/nano-ucla/emerging-contaminant-nanomaterials.pdf. Accessed 20 Dec 2015

[52]

Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett, 2005, 158(2): 122-132

[53]

Yang K, Wang XL, Zhu LZ, Xing BS. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol, 2006, 40: 5804-5810

[54]

Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res, 2007, 119: 77-88

[55]

Zhang WF, Yl He, Zhang MS, Yin Z. Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys, 2000, 33: 912

[56]

Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z, Dionysiou DD. Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). J Hazard Mater, 2012, 209: 271-277

[57]

Zhang M, Gao B, Chen J, Li Y. Effects of graphene on seed germination and seedling growth. J Nanopart Res, 2015, 17: 1-8

[58]

Zheng L, Hong F, Lu S, Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res, 2005, 104(1): 83-91

Funding

University Grants Commission (UGC), New Delhi, India

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/