Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots

Yulin Liu, Sumin Bae, Seongha Lee, Anqi Wang, Youngsoo Jung, Doh-Kwon Lee, Jung-Kun Lee

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (6) : e12456. DOI: 10.1002/eom2.12456
RESEARCH ARTICLE

Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots

Author information +
History +

Abstract

Formamidinium lead iodide (FAPbI3) and SnO2 are a promising pair of halide perovskite and electron transport layer (ETL). However, FAPbI3 and SnO2 have inherent problems such as high crystallization temperature of FAPbI3 and surface defects of SnO2 like oxygen vacancies. They cause low crystallinity, non-uniform grain growth, and more interface defects, leading to carrier recombination and leakage current. The passivation of the interface between FAPbI3 and SnO2 is an effective process to address these materials issues. Herein, a dual role of lead sulfide (PbS) quantum dots (QDs) in the interface passivation is explored. PbS QDs which are introduced to the interface between FAPbI3 and ETL, link to Sn-dangling bonds of SnO2 ETLs and anchor the iodine atoms of FAPbI3. This changes considerably lower nonradiative recombination, achieve a better energetic alignment between ETL and PbI3, and facilitate electron extraction, leading to a power conversion efficiency of 21.66%.

Keywords

FAPbI3 / interfacial passivation / PbS quantum dots / perovskite solar cells / SnO2 electron transport layers

Cite this article

Download citation ▾
Yulin Liu, Sumin Bae, Seongha Lee, Anqi Wang, Youngsoo Jung, Doh-Kwon Lee, Jung-Kun Lee. Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots. EcoMat, 2024, 6(6): e12456 https://doi.org/10.1002/eom2.12456

References

[1]
Gholipour S, Saliba M. From exceptional properties to stability challenges of perovskite solar cells. Small. 2018;14(46):e1802385.
[2]
Kim GWet al. Perovskite solar cells: donor–acceptor type dopant-free, polymeric hole transport material for planar perovskite solar cells (19.8%). Adv Energ Mater. 2018;8(4):1870018.
[3]
Cheng X, Yang S, Cao B, Tao X, Chen Z. Single crystal perovskite solar cells: development and perspectives. Adv Funct Mater. 2020;30(4):1905021.
CrossRef Google scholar
[4]
Shojaee SA, Harriman TA, Han GS, Han J-K, Lucca DA. Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films. Appl Phys Lett. 2017;111(2):023902.
[5]
Ngo TT, Masi S, Mendez PF, Kazes M, Oron D, Seró IM. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. Nano Adv. 2019;1(10):4109-4118.
CrossRef Google scholar
[6]
Kim M, Jeong J, Lu H, et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science. 2022;375(6578):302-306.
CrossRef Google scholar
[7]
Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021;598(7881):444-450.
CrossRef Google scholar
[8]
Wen L, Rao Y, Zhu M, et al. Reducing defects density and enhancing hole extraction for efficient perovskite solar cells enabled by π-Pb2+ interactions. Angew Chem Int ed. 2021;60(32):17356-17361.
CrossRef Google scholar
[9]
Park SY, Zhu K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv Mater. 2022;34(27):2110438.
CrossRef Google scholar
[10]
Mahmud MA, Duong T, Yin Y, et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Adv Funct Mater. 2020;30(7):1907962.
CrossRef Google scholar
[11]
Ren X, Liu Y, Lee DG, et al. Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. InfoMat. 2020;2(2):401-408.
CrossRef Google scholar
[12]
Wang H, Cao S, Yang B, et al. NH4Cl-modified ZnO for high-performance CsPbIBr2Perovskite solar cells via low-temperature process. Solar Rrl. 2020;4(1):1900363.
CrossRef Google scholar
[13]
Zhang F, Ye S, Zhang H, et al. Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy. 2021;89:106370.
CrossRef Google scholar
[14]
Sánchez-Godoy HE, Erazo EA, Gualdrón-Reyes AF, et al. Preferred growth direction by PbS nanoplatelets preserves perovskite infrared light harvesting for stable, reproducible, and efficient solar cells. Adv Ener Mater. 2020;10(46):2002422.
CrossRef Google scholar
[15]
Ma R, Ren Z, Li C, et al. Establishing multifunctional interface layer of perovskite ligand modified lead sulfide quantum dots for improving the performance and stability of perovskite solar cells. Small. 2020;16(41):2002628.
CrossRef Google scholar
[16]
Duff M, Bae S, Lee J-K. Characterization of carrier transport using a bifacial structure for rational design of pn junction PbS solar cells. J Power Sources. 2022;518:230742.
CrossRef Google scholar
[17]
Li M, Yuan X, Ruan H, et al. Synthesis of PbS-CH3NH3PbI3 core-shell nanoparticles with enhanced photoelectric properties. J Alloys Compd. 2017;706:395-400.
CrossRef Google scholar
[18]
Li H, Jiao S, Ren J, et al. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure. Phys Chem Chem Phys. 2016;18(5):4144-4153.
CrossRef Google scholar
[19]
Kim S, Yun YJ, Kim T, Lee C, Ko Y, Jun Y. Hydrolysis-regulated chemical Bath deposition of tin-oxide-based electron transport layers for efficient perovskite solar cells with a reduced potential loss. Chem Mater. 2021;33(21):8194-8204.
CrossRef Google scholar
[20]
Dutta D, Bahadur D. Influence of confinement regimes on magnetic property of pristine SnO 2 quantum dots. J Mater Chem. 2012;22(47):24545-24551.
CrossRef Google scholar
[21]
Yang X, Yang J, Khan J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand. Nano-Micro Letters. 2020;12(1):37.
CrossRef Google scholar
[22]
Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;9(1):1-11.
CrossRef Google scholar
[23]
Li X, Zhang W, Guo X, Lu C, Wei J, Fang J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science. 2022;375(6579):434-437.
CrossRef Google scholar
[24]
Peng J, Khan JI, Liu W, et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly (methyl methacrylate). Adv Energ Mater. 2018;8(30):1801208.
CrossRef Google scholar
[25]
Kim M, Kim GH, Lee TK, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 2019;3(9):2179-2192.
CrossRef Google scholar
[26]
Wang Z, Zhou Y, Pang S, et al. Additive-modulated evolution of HC (NH2) 2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem Mater. 2015;27(20):7149-7155.
CrossRef Google scholar
[27]
Yang G, Zhang H, Li G, Fang G. Stabilizer-assisted growth of formamdinium-based perovskites for highly efficient and stable planar solar cells with over 22% efficiency. Nano Energy. 2019;63:103835.
CrossRef Google scholar
[28]
Jung EH, Chen B, Bertens K, et al. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Enery Lett. 2020;5(9):2796-2801.
CrossRef Google scholar
[29]
Cao Y, Stavrinadis A, Lasanta T, So D, Konstantatos G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat Energy. 2016;1(4):1-6.
CrossRef Google scholar
[30]
Zhang X, Chen Y, Lian L, et al. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Research. 2021;14(3):628-634.
CrossRef Google scholar
[31]
Aynehband S, Mohammadi M, Poushimin R, Azar MH, Nunzi JM, Simchi A. Self-assembly, stability, and photoresponse of PbS quantum dot films capped with mixed halide perovskite ligands. Mater Res Bull. 2022;147:111648.
CrossRef Google scholar
[32]
Lin CY, Li SS, Chang JW, et al. Unveiling the nanoparticle-seeded catalytic nucleation kinetics of perovskite solar cells by time-resolved GIXS. Adv Funct Mater. 2019;29(36):1902582.
CrossRef Google scholar
[33]
Aynehband S, Mohammadi M, Thorwarth K, et al. Solution processing and self-organization of PbS quantum dots passivated with Formamidinium Lead iodide (FAPbI(3)). ACS Omega. 2020;5(25):15746-15754.
CrossRef Google scholar
[34]
Prathapani S, Choudhary D, Mallick S, Bhargava P, Yella A. Experimental evaluation of room temperature crystallization and phase evolution of hybrid perovskite materials. CrstEngComm. 2017;19(27):3834-3843.
CrossRef Google scholar
[35]
Zhang K, Wang Z, Wang G, et al. A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat Commun. 2020;11(1):1006.
CrossRef Google scholar
[36]
Ozaki M, Shimazaki A, Jung M, et al. A purified, solvent-intercalated precursor complex for wide-process-window fabrication of efficient perovskite solar cells and modules. Angew Chem Int ed Engl. 2019;58(28):9389-9393.
CrossRef Google scholar
[37]
Zheng X, Lei H, Yang G, et al. Enhancing efficiency and stability of perovskite solar cells via a high mobility p-type PbS buffer layer. Nano Energy. 2017;38:1-11.
CrossRef Google scholar
[38]
Dong J, Jia J, Feng X, et al. Ligand exchange of SnO2 effectively improving the efficiency of flexible perovskite solar cells. J Alloys Compd. 2021;883:160827.
CrossRef Google scholar
[39]
Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res. 2016;49(2):286-293.
CrossRef Google scholar
[40]
Zheng S, Chen J, Johansson EMJ, Zhang X. PbS colloidal quantum dot inks for infrared solar cells. iScience. 2020;23(11):101753.
CrossRef Google scholar
[41]
Calado P, Telford AM, Bryant D, et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun. 2016;7(1):13831.
CrossRef Google scholar
[42]
Xiong Z, Lan L, Wang Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Ener Lett. 2021;6(11):3824-3830.
CrossRef Google scholar
[43]
Zhu P, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Ener Mater. 2020;10(3):1903083.
CrossRef Google scholar
[44]
Jiang Q, Zhang L, Wang H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy. 2016;2(1):16177.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/