Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer

Gyeong G. Jeon, Da Seul Lee, Min Jun Choi, You-Hyun Seo, Shujuan Huang, Jong H. Kim, Seong Sik Shin, Jincheol Kim

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (6) : e12455. DOI: 10.1002/eom2.12455
RESEARCH ARTICLE

Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer

Author information +
History +

Abstract

Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al2O3) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm−2 under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.

Keywords

alumina interlayer / low-light intensity / parasitic leakage current / perovskite solar cells / photovoltaic devices

Cite this article

Download citation ▾
Gyeong G. Jeon, Da Seul Lee, Min Jun Choi, You-Hyun Seo, Shujuan Huang, Jong H. Kim, Seong Sik Shin, Jincheol Kim. Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer. EcoMat, 2024, 6(6): e12455 https://doi.org/10.1002/eom2.12455

References

[1]
Carnemolla P. Ageing in place and the internet of things–how smart home technologies, the built environment and caregiving intersect. Vis Eng. 2018;6(1):7.
CrossRef Google scholar
[2]
Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Things J. 2014;1(1):22-32.
CrossRef Google scholar
[3]
Islam SR, Kwak D, Kabir MH, Hossain M, Kwak K-S. The internet of things for health care: a comprehensive survey. IEEE Access. 2015;3:678-708.
CrossRef Google scholar
[4]
Wollschlaeger M, Sauter T, Jasperneite J. The future of industrial communication: automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag. 2017;11(1):17-27.
CrossRef Google scholar
[5]
Mathews I, Kantareddy SN, Buonassisi T, Peters IM. Technology and market perspective for indoor photovoltaic cells. Joule. 2019;3(6):1415-1426.
CrossRef Google scholar
[6]
Mathews I, Kantareddy SNR, Sun S, et al. Self-powered sensors enabled by wide-bandgap perovskite indoor photovoltaic cells. Adv Funct Mater. 2019;29(42):1904072.
CrossRef Google scholar
[7]
Wojciechowski K, Forgács D. Commercial applications of indoor photovoltaics based on flexible perovskite solar cells. ACS Energy Lett. 2022;7(10):3729-3733.
CrossRef Google scholar
[8]
Bing J, Caro LG, Talathi HP, Chang NL, McKenzie DR, Ho-Baillie AWY. Perovskite solar cells for building integrated photovoltaics—glazing applications. Joule. 2022;6(7):1446-1474.
CrossRef Google scholar
[9]
Brenner TM, Egger DA, Kronik L, Hodes G, Cahen D. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater. 2016;1(1):15007.
CrossRef Google scholar
[10]
Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy. 2018;3(8):682-689.
CrossRef Google scholar
[11]
Yang WS, Park B-W, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376-1379.
CrossRef Google scholar
[12]
Hwang S, Yasuda T. Indoor photovoltaic energy harvesting based on semiconducting π-conjugated polymers and oligomeric materials toward future IoT applications. Polym J. 2023;55(4):297-316.
CrossRef Google scholar
[13]
Russo J, Ray W, Litz MS. Low light illumination study on commercially available homojunction photovoltaic cells. Appl Energy. 2017;191:10-21.
CrossRef Google scholar
[14]
Shirvanimoghaddam M, Shirvanimoghaddam K, Abolhasani MM, et al. Towards a green and self-powered internet of things using piezoelectric energy harvesting. IEEE Access. 2019;7:94533-94556.
CrossRef Google scholar
[15]
Chiang C-H, Wu C-G. Large-area perovskite film prepared by new FFASE method for stable solar modules having high efficiency under both outdoor and indoor light harvesting. Adv Sci. 2023;10(7):2205967.
CrossRef Google scholar
[16]
Chen Z, Wang T, Wen Z, et al. Trap state induced recombination effects on indoor organic photovoltaic cells. ACS Energy Lett. 2021;6(9):3203-3211.
CrossRef Google scholar
[17]
Zeiske S, Sandberg OJ, Zarrabi N, Li W, Meredith P, Armin A. Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat Commun. 2021;12(1):3603.
CrossRef Google scholar
[18]
Shin SJ, Alosaimi G, Choi MJ, et al. Strategic approach for frustrating charge recombination of perovskite solar cells in low-intensity indoor light: insertion of polar small molecules at the interface of the electron transport layer. ACS Appl Energy Mater. 2022;5(11):13234-13242.
CrossRef Google scholar
[19]
Park SY, Li Y, Kim J, et al. Alkoxybenzothiadiazole-based fullerene and nonfullerene polymer solar cells with high shunt resistance for indoor photovoltaic applications. ACS Appl Mater Interfaces. 2018;10(4):3885-3894.
CrossRef Google scholar
[20]
Nv R, Van Sark W, Alsema E, et al. Crystalline silicon cell performance at low light intensities. Sol. Energy Mater. Sol. Cells. 2009;93(9):1471-1481.
CrossRef Google scholar
[21]
Li Q, Shen K, Yang R, et al. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance. Sol Energy. 2017;157:216-226.
CrossRef Google scholar
[22]
Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz SW. Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol. Energy Mater. Sol. Cells. 2014;131:46-50.
CrossRef Google scholar
[23]
Feldmann F, Bivour M, Reichel C, Hermle M, Glunz SW. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells. 2014;120:270-274.
CrossRef Google scholar
[24]
Peng W, Mao K, Cai F, et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science. 2023;379(6633):683-690.
CrossRef Google scholar
[25]
Ann MH, Kim J, Kim M, et al. Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy. 2020;68:104321.
CrossRef Google scholar
[26]
Chung J, Shin SS, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energ Environ Sci. 2020;13(12):4854-4861.
CrossRef Google scholar
[27]
Ramirez D, Schutt K, Montoya JF, et al. Meso-superstructured perovskite solar cells: revealing the role of the mesoporous layer. J Phys Chem C. 2018;122(37):21239-21247.
CrossRef Google scholar
[28]
Cui Y, Hong L, Zhang T, et al. Accurate photovoltaic measurement of organic cells for indoor applications. Joule. 2021;5(5):1016-1023.
CrossRef Google scholar
[29]
Bi Z, Xu X, Chen X, et al. High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications. Chem Eng J. 2022;446:137164.
CrossRef Google scholar
[30]
Chegaar M, Hamzaoui A, Namoda A, Petit P, Aillerie M, Herguth A. Effect of illumination intensity on solar cells parameters. Energy Procedia. 2013;36:722-729.
CrossRef Google scholar
[31]
Ryu S, Nguyen DC, Ha NY, et al. Light intensity-dependent variation in defect contributions to charge transport and recombination in a planar MAPbI3 perovskite solar cell. Sci Rep. 2019;9(1):19846.
CrossRef Google scholar
[32]
Jain A, Kapoor A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells. 2004;81(2):269-277.
CrossRef Google scholar
[33]
Glowienka D, Galagan Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv Mater. 2022;34(2):2105920.
CrossRef Google scholar
[34]
Proctor CM, Nguyen T-Q. Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl Phys Lett. 2015;106(8):083301.
CrossRef Google scholar
[35]
Chen P-W, Hsiao P-W, Chen H-J, et al. On the mechanism of carrier recombination in downsized blue micro-LEDs. Sci Rep. 2021;11(1):22788.
CrossRef Google scholar
[36]
Fang Z, He H, Gan L, Li J, Ye Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv Sci. 2018;5(12):1800736.
CrossRef Google scholar
[37]
Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643-647.
CrossRef Google scholar
[38]
Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;9(1):3239.
CrossRef Google scholar
[39]
You J, Guo F, Qiu S, et al. The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification. J Energy Chem. 2019;38:192-198.
CrossRef Google scholar
[40]
Tan CS, Hou Y, Saidaminov MI, et al. Heterogeneous supersaturation in mixed perovskites. Adv Sci. 2020;7(7):1903166.
CrossRef Google scholar
[41]
Li W, Rothmann MU, Zhu Y, et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1–x FAxPbI3 perovskite solar cells. Nat Energy. 2021;6(6):624-632.
CrossRef Google scholar
[42]
Luo C, Zheng G, Gao F, et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule. 2022;6(1):240-257.
CrossRef Google scholar
[43]
Sun R, Tian Q, Li M, et al. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V. Adv Func Mater. 2023;33(6):2210071.
CrossRef Google scholar
[44]
Subedi B, Li C, Chen C, et al. Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells. ACS Appl Mater Interfaces. 2022;14(6):7796-7804.
CrossRef Google scholar
[45]
Han L, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. C R Chim. 2006;9(5–6):645-651.
CrossRef Google scholar
[46]
Bi Z, Zhang S, Thandapani M, et al. High shunt resistance SnO2-PbO electron transport layer for perovskite solar cells used in low lighting applications. Adv Sustain Syst. 2021;5(11):2100120.
CrossRef Google scholar
[47]
Kakinuma H, Akiyama M. Broad photoluminescence band in undoped AlxGa1−xAs grown by organometallic vapor phase epitaxy. J Appl Phys. 1997;81(11):7533-7539.
CrossRef Google scholar
[48]
Wang H, Ji Z, Qu S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt Express. 2012;20(4):3932-3940.
CrossRef Google scholar
[49]
Campanari V, Martelli F, Agresti A, et al. Reevaluation of photoluminescence intensity as an indicator of efficiency in perovskite solar cells. Sol RRL. 2022;6(8):2200049.
CrossRef Google scholar
[50]
Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol. 2014;9(11):927-932.
CrossRef Google scholar
[51]
Lee Y-S, Kwon S-N, Na S-I, Kim D, Kim S-W. Thermally and air stable perovskite solar cells with a hole transporting PTAA/NiO bilayer. Appl Sci. 2022;12(24):12888.
CrossRef Google scholar
[52]
Kang Y-J, Kwon S-N, Cho S-P, et al. Antisolvent additive engineering containing dual-function additive for triple-cation p–i–n perovskite solar cells with over 20% PCE. ACS Energy Lett. 2020;5(8):2535-2545.
CrossRef Google scholar
[53]
Wang ZS, Ebadi F, Carlsen B, Choy WC, Tress W. Transient photovoltage measurements on perovskite solar cells with varied defect concentrations and inhomogeneous recombination rates. Small Methods. 2020;4(9):2000290.
CrossRef Google scholar
[54]
Palomares E, Montcada NF, Méndez M, Jiménez-López J, Yang W, Boschloo G. Chapter 7–Photovoltage/photocurrent transient techniques. In: Pazoki M, Hagfeldt A, Edvinsson T, eds. Characterization Techniques for Perovskite Solar Cell Materials. Elsevier; 2020: 161-180.
[55]
Zhao J, Zhang Y, Zhao X, et al. Band alignment strategy for printable triple mesoscopic perovskite solar cells with enhanced photovoltage. ACS Appl Energy Mater. 2019;2(3):2034-2042.
CrossRef Google scholar
[56]
Kar A, Kundu S, Patra A. Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J Phys Chem C. 2011;115(1):118-124.
CrossRef Google scholar
[57]
Porte Y, Maller R, Faber H, AlShareef HN, Anthopoulos TD, McLachlan MA. Exploring and controlling intrinsic defect formation in SnO2 thin films. J Mater Chem C. 2016;4(4):758-765.
CrossRef Google scholar
[58]
Jiang J, Zou X, Lv Y, et al. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat Commun. 2020;11(1):4266.
CrossRef Google scholar
[59]
De Wolf S, Holovsky J, Moon S-J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett. 2014;5(6):1035-1039.
CrossRef Google scholar
[60]
Chen W, Wu Y, Liu J, et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energ Environ Sci. 2015;8(2):629-640.
CrossRef Google scholar
[61]
Cheng H, Feng Y, Fu Y, Zheng Y, Shao Y, Bai Y. Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J Mater Chem C. 2022;10(37):13590-13610.
CrossRef Google scholar
[62]
Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett. 2015;6(3):432-437.
CrossRef Google scholar
[63]
Dagar J, Castro-Hermosa S, Lucarelli G, Cacialli F, Brown TM. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy. 2018;49:290-299.
CrossRef Google scholar
[64]
Lee HKH, Barbé J, Meroni SM, et al. Outstanding indoor performance of perovskite photovoltaic cells–effect of device architectures and interlayers. Sol RRL. 2019;3(1):1800207.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/