Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer
Gyeong G. Jeon, Da Seul Lee, Min Jun Choi, You-Hyun Seo, Shujuan Huang, Jong H. Kim, Seong Sik Shin, Jincheol Kim
Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer
Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al2O3) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm−2 under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.
alumina interlayer / low-light intensity / parasitic leakage current / perovskite solar cells / photovoltaic devices
[1] |
Carnemolla P. Ageing in place and the internet of things–how smart home technologies, the built environment and caregiving intersect. Vis Eng. 2018;6(1):7.
CrossRef
Google scholar
|
[2] |
Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Things J. 2014;1(1):22-32.
CrossRef
Google scholar
|
[3] |
Islam SR, Kwak D, Kabir MH, Hossain M, Kwak K-S. The internet of things for health care: a comprehensive survey. IEEE Access. 2015;3:678-708.
CrossRef
Google scholar
|
[4] |
Wollschlaeger M, Sauter T, Jasperneite J. The future of industrial communication: automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag. 2017;11(1):17-27.
CrossRef
Google scholar
|
[5] |
Mathews I, Kantareddy SN, Buonassisi T, Peters IM. Technology and market perspective for indoor photovoltaic cells. Joule. 2019;3(6):1415-1426.
CrossRef
Google scholar
|
[6] |
Mathews I, Kantareddy SNR, Sun S, et al. Self-powered sensors enabled by wide-bandgap perovskite indoor photovoltaic cells. Adv Funct Mater. 2019;29(42):1904072.
CrossRef
Google scholar
|
[7] |
Wojciechowski K, Forgács D. Commercial applications of indoor photovoltaics based on flexible perovskite solar cells. ACS Energy Lett. 2022;7(10):3729-3733.
CrossRef
Google scholar
|
[8] |
Bing J, Caro LG, Talathi HP, Chang NL, McKenzie DR, Ho-Baillie AWY. Perovskite solar cells for building integrated photovoltaics—glazing applications. Joule. 2022;6(7):1446-1474.
CrossRef
Google scholar
|
[9] |
Brenner TM, Egger DA, Kronik L, Hodes G, Cahen D. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater. 2016;1(1):15007.
CrossRef
Google scholar
|
[10] |
Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy. 2018;3(8):682-689.
CrossRef
Google scholar
|
[11] |
Yang WS, Park B-W, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376-1379.
CrossRef
Google scholar
|
[12] |
Hwang S, Yasuda T. Indoor photovoltaic energy harvesting based on semiconducting π-conjugated polymers and oligomeric materials toward future IoT applications. Polym J. 2023;55(4):297-316.
CrossRef
Google scholar
|
[13] |
Russo J, Ray W, Litz MS. Low light illumination study on commercially available homojunction photovoltaic cells. Appl Energy. 2017;191:10-21.
CrossRef
Google scholar
|
[14] |
Shirvanimoghaddam M, Shirvanimoghaddam K, Abolhasani MM, et al. Towards a green and self-powered internet of things using piezoelectric energy harvesting. IEEE Access. 2019;7:94533-94556.
CrossRef
Google scholar
|
[15] |
Chiang C-H, Wu C-G. Large-area perovskite film prepared by new FFASE method for stable solar modules having high efficiency under both outdoor and indoor light harvesting. Adv Sci. 2023;10(7):2205967.
CrossRef
Google scholar
|
[16] |
Chen Z, Wang T, Wen Z, et al. Trap state induced recombination effects on indoor organic photovoltaic cells. ACS Energy Lett. 2021;6(9):3203-3211.
CrossRef
Google scholar
|
[17] |
Zeiske S, Sandberg OJ, Zarrabi N, Li W, Meredith P, Armin A. Direct observation of trap-assisted recombination in organic photovoltaic devices. Nat Commun. 2021;12(1):3603.
CrossRef
Google scholar
|
[18] |
Shin SJ, Alosaimi G, Choi MJ, et al. Strategic approach for frustrating charge recombination of perovskite solar cells in low-intensity indoor light: insertion of polar small molecules at the interface of the electron transport layer. ACS Appl Energy Mater. 2022;5(11):13234-13242.
CrossRef
Google scholar
|
[19] |
Park SY, Li Y, Kim J, et al. Alkoxybenzothiadiazole-based fullerene and nonfullerene polymer solar cells with high shunt resistance for indoor photovoltaic applications. ACS Appl Mater Interfaces. 2018;10(4):3885-3894.
CrossRef
Google scholar
|
[20] |
Nv R, Van Sark W, Alsema E, et al. Crystalline silicon cell performance at low light intensities. Sol. Energy Mater. Sol. Cells. 2009;93(9):1471-1481.
CrossRef
Google scholar
|
[21] |
Li Q, Shen K, Yang R, et al. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance. Sol Energy. 2017;157:216-226.
CrossRef
Google scholar
|
[22] |
Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz SW. Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol. Energy Mater. Sol. Cells. 2014;131:46-50.
CrossRef
Google scholar
|
[23] |
Feldmann F, Bivour M, Reichel C, Hermle M, Glunz SW. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells. 2014;120:270-274.
CrossRef
Google scholar
|
[24] |
Peng W, Mao K, Cai F, et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science. 2023;379(6633):683-690.
CrossRef
Google scholar
|
[25] |
Ann MH, Kim J, Kim M, et al. Device design rules and operation principles of high-power perovskite solar cells for indoor applications. Nano Energy. 2020;68:104321.
CrossRef
Google scholar
|
[26] |
Chung J, Shin SS, Hwang K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energ Environ Sci. 2020;13(12):4854-4861.
CrossRef
Google scholar
|
[27] |
Ramirez D, Schutt K, Montoya JF, et al. Meso-superstructured perovskite solar cells: revealing the role of the mesoporous layer. J Phys Chem C. 2018;122(37):21239-21247.
CrossRef
Google scholar
|
[28] |
Cui Y, Hong L, Zhang T, et al. Accurate photovoltaic measurement of organic cells for indoor applications. Joule. 2021;5(5):1016-1023.
CrossRef
Google scholar
|
[29] |
Bi Z, Xu X, Chen X, et al. High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications. Chem Eng J. 2022;446:137164.
CrossRef
Google scholar
|
[30] |
Chegaar M, Hamzaoui A, Namoda A, Petit P, Aillerie M, Herguth A. Effect of illumination intensity on solar cells parameters. Energy Procedia. 2013;36:722-729.
CrossRef
Google scholar
|
[31] |
Ryu S, Nguyen DC, Ha NY, et al. Light intensity-dependent variation in defect contributions to charge transport and recombination in a planar MAPbI3 perovskite solar cell. Sci Rep. 2019;9(1):19846.
CrossRef
Google scholar
|
[32] |
Jain A, Kapoor A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells. 2004;81(2):269-277.
CrossRef
Google scholar
|
[33] |
Glowienka D, Galagan Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv Mater. 2022;34(2):2105920.
CrossRef
Google scholar
|
[34] |
Proctor CM, Nguyen T-Q. Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl Phys Lett. 2015;106(8):083301.
CrossRef
Google scholar
|
[35] |
Chen P-W, Hsiao P-W, Chen H-J, et al. On the mechanism of carrier recombination in downsized blue micro-LEDs. Sci Rep. 2021;11(1):22788.
CrossRef
Google scholar
|
[36] |
Fang Z, He H, Gan L, Li J, Ye Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv Sci. 2018;5(12):1800736.
CrossRef
Google scholar
|
[37] |
Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643-647.
CrossRef
Google scholar
|
[38] |
Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018;9(1):3239.
CrossRef
Google scholar
|
[39] |
You J, Guo F, Qiu S, et al. The fabrication of homogeneous perovskite films on non-wetting interfaces enabled by physical modification. J Energy Chem. 2019;38:192-198.
CrossRef
Google scholar
|
[40] |
Tan CS, Hou Y, Saidaminov MI, et al. Heterogeneous supersaturation in mixed perovskites. Adv Sci. 2020;7(7):1903166.
CrossRef
Google scholar
|
[41] |
Li W, Rothmann MU, Zhu Y, et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1–x FAxPbI3 perovskite solar cells. Nat Energy. 2021;6(6):624-632.
CrossRef
Google scholar
|
[42] |
Luo C, Zheng G, Gao F, et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule. 2022;6(1):240-257.
CrossRef
Google scholar
|
[43] |
Sun R, Tian Q, Li M, et al. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V. Adv Func Mater. 2023;33(6):2210071.
CrossRef
Google scholar
|
[44] |
Subedi B, Li C, Chen C, et al. Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells. ACS Appl Mater Interfaces. 2022;14(6):7796-7804.
CrossRef
Google scholar
|
[45] |
Han L, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. C R Chim. 2006;9(5–6):645-651.
CrossRef
Google scholar
|
[46] |
Bi Z, Zhang S, Thandapani M, et al. High shunt resistance SnO2-PbO electron transport layer for perovskite solar cells used in low lighting applications. Adv Sustain Syst. 2021;5(11):2100120.
CrossRef
Google scholar
|
[47] |
Kakinuma H, Akiyama M. Broad photoluminescence band in undoped AlxGa1−xAs grown by organometallic vapor phase epitaxy. J Appl Phys. 1997;81(11):7533-7539.
CrossRef
Google scholar
|
[48] |
Wang H, Ji Z, Qu S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Opt Express. 2012;20(4):3932-3940.
CrossRef
Google scholar
|
[49] |
Campanari V, Martelli F, Agresti A, et al. Reevaluation of photoluminescence intensity as an indicator of efficiency in perovskite solar cells. Sol RRL. 2022;6(8):2200049.
CrossRef
Google scholar
|
[50] |
Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol. 2014;9(11):927-932.
CrossRef
Google scholar
|
[51] |
Lee Y-S, Kwon S-N, Na S-I, Kim D, Kim S-W. Thermally and air stable perovskite solar cells with a hole transporting PTAA/NiO bilayer. Appl Sci. 2022;12(24):12888.
CrossRef
Google scholar
|
[52] |
Kang Y-J, Kwon S-N, Cho S-P, et al. Antisolvent additive engineering containing dual-function additive for triple-cation p–i–n perovskite solar cells with over 20% PCE. ACS Energy Lett. 2020;5(8):2535-2545.
CrossRef
Google scholar
|
[53] |
Wang ZS, Ebadi F, Carlsen B, Choy WC, Tress W. Transient photovoltage measurements on perovskite solar cells with varied defect concentrations and inhomogeneous recombination rates. Small Methods. 2020;4(9):2000290.
CrossRef
Google scholar
|
[54] |
Palomares E, Montcada NF, Méndez M, Jiménez-López J, Yang W, Boschloo G. Chapter 7–Photovoltage/photocurrent transient techniques. In: Pazoki M, Hagfeldt A, Edvinsson T, eds. Characterization Techniques for Perovskite Solar Cell Materials. Elsevier; 2020: 161-180.
|
[55] |
Zhao J, Zhang Y, Zhao X, et al. Band alignment strategy for printable triple mesoscopic perovskite solar cells with enhanced photovoltage. ACS Appl Energy Mater. 2019;2(3):2034-2042.
CrossRef
Google scholar
|
[56] |
Kar A, Kundu S, Patra A. Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J Phys Chem C. 2011;115(1):118-124.
CrossRef
Google scholar
|
[57] |
Porte Y, Maller R, Faber H, AlShareef HN, Anthopoulos TD, McLachlan MA. Exploring and controlling intrinsic defect formation in SnO2 thin films. J Mater Chem C. 2016;4(4):758-765.
CrossRef
Google scholar
|
[58] |
Jiang J, Zou X, Lv Y, et al. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat Commun. 2020;11(1):4266.
CrossRef
Google scholar
|
[59] |
De Wolf S, Holovsky J, Moon S-J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett. 2014;5(6):1035-1039.
CrossRef
Google scholar
|
[60] |
Chen W, Wu Y, Liu J, et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energ Environ Sci. 2015;8(2):629-640.
CrossRef
Google scholar
|
[61] |
Cheng H, Feng Y, Fu Y, Zheng Y, Shao Y, Bai Y. Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J Mater Chem C. 2022;10(37):13590-13610.
CrossRef
Google scholar
|
[62] |
Guarnera S, Abate A, Zhang W, et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett. 2015;6(3):432-437.
CrossRef
Google scholar
|
[63] |
Dagar J, Castro-Hermosa S, Lucarelli G, Cacialli F, Brown TM. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy. 2018;49:290-299.
CrossRef
Google scholar
|
[64] |
Lee HKH, Barbé J, Meroni SM, et al. Outstanding indoor performance of perovskite photovoltaic cells–effect of device architectures and interlayers. Sol RRL. 2019;3(1):1800207.
CrossRef
Google scholar
|
/
〈 | 〉 |