Reinforced nanowrinkle electrospun photothermal membranes via solvent-induced recrystallization

Jinlin Chang , Weiling Wang , Zhaoxin Li , Yujiao Wang , Yacong Hou , Zhiyuan Cao , Zhenwei Liang , Yuan Ma , Ding Weng , Jun Song , Yadong Yu , Lei Chen , Jiadao Wang

EcoMat ›› 2024, Vol. 6 ›› Issue (6) : e12454

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (6) : e12454 DOI: 10.1002/eom2.12454
RESEARCH ARTICLE

Reinforced nanowrinkle electrospun photothermal membranes via solvent-induced recrystallization

Author information +
History +
PDF

Abstract

Wearable photothermal materials can capture light energy in nature and convert it into heat energy, which is critical for flexible outdoor sports. However, the conventional flexible photothermal membranes with low specific surface area restrict the maximum photothermal capability, and loose structure of electrospun membrane limits durability of wearable materials. Here, an ultrathin nanostructure candle soot/multi-walled carbon nanotubes/poly (L-lactic acid) (CS/MWCNTs/PLLA) photothermal membrane is first prepared via solvent-induced recrystallization. The white blood cell membrane-like nanowrinkles with high specific surface area are achieved for the first time and exhibit optimal light absorption. The solvent-induced recrystallization also enables the membrane to realize large strength and durability. Meanwhile, the membranes also show two-sided heterochromatic features and transparency in thick and thin situations, respectively, suggesting outstanding fashionability. The nano-wrinkled photothermal membranes by novel solvent-induced recrystallization show high flexibility, fashionability, strength, and photothermal characteristics, which have huge potential for outdoor warmth and winter sportswear.

Keywords

composites / nanowrinkle / photothermal membrane / solvent-induced recrystallization

Cite this article

Download citation ▾
Jinlin Chang, Weiling Wang, Zhaoxin Li, Yujiao Wang, Yacong Hou, Zhiyuan Cao, Zhenwei Liang, Yuan Ma, Ding Weng, Jun Song, Yadong Yu, Lei Chen, Jiadao Wang. Reinforced nanowrinkle electrospun photothermal membranes via solvent-induced recrystallization. EcoMat, 2024, 6(6): e12454 DOI:10.1002/eom2.12454

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

García-Freites S, Gough C, Röder M. The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK's net-zero emission target. Biomass Bioenergy. 2021;151:106164.

[2]

Shahbaz M, Nasir MA, Hille E, Mahalik MK. UK's net-zero carbon emissions target: investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017). Technol Forecast Soc Change. 2020;161:120255.

[3]

Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J Control Release. 2019;299:1-20.

[4]

Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device. Adv Mater. 2017;29(30):1701756.

[5]

Zhu L, Gao M, Peh CKN, Ho GW. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy. 2019;57:507-518.

[6]

Chen W, Miao H, Meng G, et al. Polydopamine-induced multilevel engineering of regenerated silk fibroin fiber for photothermal conversion. Small. 2022;18(11):2107196.

[7]

Mäkinen TM, Hassi J. Health problems in cold work. Ind Health. 2009;47(3):207-220.

[8]

Wang W, Chang J, Chen L, et al. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J Colloid Interface Sci. 2023;655:307-318.

[9]

Tan Y, Hu B, Song J, Chu Z, Wu W. Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Letters. 2020;12(1):1-42.

[10]

Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 2016;35(10):1021-1044.

[11]

Shyer AE, Tallinen T, Nerurkar NL, et al. Villification: how the gut gets its villi. Science. 2013;342(6155):212-218.

[12]

Hallett MB, von Ruhland CJ, Dewitt S. Chemotaxis and the cell surface-area problem. Nat Rev Mol Cell Biol. 2008;9(8):662.

[13]

Wang L, Castro CE, Boyce MC. Growth strain-induced wrinkled membrane morphology of white blood cells. Soft Matter. 2011;7(24):11319-11324.

[14]

Dong J, Luo S, Ning S, et al. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl Mater Interfaces. 2021;13(50):60478-60488.

[15]

Zeng S, Yang Z, Hou Z, et al. Dynamic multifunctional devices enabled by ultrathin metal nanocoatings with optical/photothermal and morphological versatility. Proc Natl Acad Sci. 2022;119(4):e2118991119.

[16]

Hou H, Yin J, Jiang X. Smart patterned surface with dynamic wrinkles. Acc Chem Res. 2019;52(4):1025-1035.

[17]

Ma T, Bai J, Li T, et al. Light-driven dynamic surface wrinkles for adaptive visible camouflage. Proc Natl Acad Sci. 2021;118(48):e2114345118.

[18]

Toh W, Ding Z, Ng TY, Liu Z. Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels. Coupled Syst Mech. 2016;5(4):315-327.

[19]

Kim J-W, Chen C, Kim H, Kim S-H, Hayward RC. Effect of surface tension on elastocapillary wrinkling of interfacially adsorbed hydrogel disks with photothermally programmed swelling profiles. Soft Matter. 2023;19(20):3543-3550.

[20]

Rahneshin V, Ziolkowska DA, McClelland A, Cromwell J, Jasinski JB, Panchapakesan B. The coupled straintronic-photothermic effect. Sci Rep. 2018;8(1):64.

[21]

Xu W, Chen S, Yao M, Jiang X, Lu Q. A near-infrared-triggered dynamic wrinkling biointerface for noninvasive harvesting of practical cell sheets. ACS Appl Mater Interfaces. 2021;13(28):32790-32798.

[22]

Gao X, Li J, Li T, et al. Photo-polymerization induced hierarchical pattern via self-wrinkling. Adv Funct Mater. 2021;31(49):2106754.

[23]

Guo W, Reese CM, Xiong L, et al. Buckling instabilities in polymer brush surfaces via postpolymerization modification. Macromolecules. 2017;50(21):8670-8677.

[24]

Fan X, Deng C, Gao H, et al. 3D printing of nanowrinkled architectures via laser direct assembly. Sci Adv. 2022;8(31):eabn9942.

[25]

Chang J, Meng C, Shi B, et al. Flexible, breathable, and reinforced ultra-thin Cu/PLLA porous-fibrous membranes for thermal management and electromagnetic interference shielding. J Mater Sci Technol. 2023;161:150-160.

[26]

Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew Chem Int Ed. 2019;58(43):15526-15531.

[27]

Zeng Z, Jiang F, Yue Y, et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv Mater. 2020;32(19):1908496.

[28]

Keiser C, Becker C, Rossi RM. Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J. 2008;78(7):604-613.

[29]

Chang J, Shi L, Zhang M, et al. Tailor-made white photothermal fabrics: a bridge between pragmatism and aesthetic. Adv Mater. 2023;35(41):2209215.

[30]

Lu Z, Zhang B, Gong H, Li J. Fabrication of hierarchical porous poly (L-lactide) (PLLA) fibrous membrane by electrospinning. Polymer. 2021;226:123797.

[31]

Yu Y, Chen L, Weng D, et al. Solvent volatilization-induced cross-linking of PDMS coatings for large-scale deicing applications. ACS Appl Polym Mater. 2022;5(1):57-66.

[32]

Jia H, Guo J, Zhu J. Comparison of the photo-thermal energy conversion behavior of polar bear hair and wool of sheep. J Bionic Eng. 2017;14(4):616-621.

[33]

Han W-H, Wang Q-Y, Kang Y-Y, Zhou X, Hao C-C. Electrospun polymer nanocomposites for thermal management: a review. Nanoscale. 2023;15(5):2003-2017.

[34]

Chung M, Skinner WH, Robert C, et al. Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers. ACS Appl Mater Interfaces. 2021;13(43):51504-51518.

[35]

Ahn Y, Hu D-H, Hong JH, Lee SH, Kim HJ, Kim H. Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr Polym. 2012;89(2):340-345.

[36]

Shi C, Yuan D, Ma L, et al. Outdoor sunlight-driven scalable water-gas shift reaction through novel photothermal device-supported CuOx/ZnO/Al2O3 nanosheets with a hydrogen generation rate of 192 mmol g−1 h−1. J Mater Chem A. 2020;8(37):19467-19472.

RIGHTS & PERMISSIONS

2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

237

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/