Enhanced sensitivity of zero-bias-operated MXene chemiresistive sensor via lignin hybridization

I Ketut Gary Devara, Mi Ji Kwon, Su-Yeon Cho, Dong-Jun Kwon, Jun Hong Park

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (6) : e12453. DOI: 10.1002/eom2.12453
RESEARCH ARTICLE

Enhanced sensitivity of zero-bias-operated MXene chemiresistive sensor via lignin hybridization

Author information +
History +

Abstract

As global urbanization intensifies, there is an increasing need for highly sensitive and accurate environmental monitoring devices that can meet the demands of specific gas sensing applications with low power consumption. This study focuses on enhancing the sensitivity of MXene-based chemiresistive sensors for detecting CO2(g) and NO2(g) under zero-bias operation. This study shows that lignin hybridization effectively improves the sensitivity of a Ti3C2Tx MXene-based chemiresistive sensor; under zero-bias operation, lignin hybridization increases the sensitivity to 15 ppm NO2(g) and CO2(g) by 157.38% and 297.95%, respectively. When deposited on a flexible substrate, the MXene/lignin flexible sensor shows a similar response and sensitivity to 15 ppm NO2(g) and CO2(g) under 38° curvature compared to the planar sensor. Consequently, the MXene/lignin hybrid sensor is attractive for room temperature and zero-bias NO2(g) and CO2(g) detection. The MXene/lignin flexible sensor serves as a model system for advanced solid-state sensory platforms suitable for curved structures.

Keywords

chemiresistive sensor / CO2 / lignin / MXene / NO2

Cite this article

Download citation ▾
I Ketut Gary Devara, Mi Ji Kwon, Su-Yeon Cho, Dong-Jun Kwon, Jun Hong Park. Enhanced sensitivity of zero-bias-operated MXene chemiresistive sensor via lignin hybridization. EcoMat, 2024, 6(6): e12453 https://doi.org/10.1002/eom2.12453

References

[1]
Organization WH. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals, World Health Organization. 2022. https://www.who.int/publications/i/item/9789240051157. Accessed December 3, 2022.
[2]
Organization WH. World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals, World Health Organization. 2023. https://www.who.int/publications/i/item/9789240074323. Accessed November 17, 2023.
[3]
Molina A, Escobar-Barrios V, Oliva J. A review on hybrid and flexible CO2 gas sensors. Synth Met. 2020;270:116602.
CrossRef Google scholar
[4]
Kumar S, Meng G, Mishra P, Tripathi N, Bannov AG. A systematic review on 2D MoS2 for nitrogen dioxide (NO2) sensing at room temperature. Mater Today Commun. 2023;34:105045.
CrossRef Google scholar
[5]
Administration OSH. OSHA Occupational Chemical Database Nitrogen Dioxide. https://www.osha.gov/chemicaldata/21 Accessed February 16, 2024.
[6]
Administration OSH. OSHA Occupational Chemical Database Carbon Dioxide. https://www.osha.gov/chemicaldata/183 Accessed February 16, 2024.
[7]
Agrawal AV, Kumar N, Kumar M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nanomicro Lett. 2021;13(1):1-58.
CrossRef Google scholar
[8]
Ko KY, Song JG, Kim Y, et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano. 2016;10(10):9287-9296.
CrossRef Google scholar
[9]
Chen Z, Wu C, Yuan Y, et al. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J Nanobiotechnol. 2023;21(1):141.
CrossRef Google scholar
[10]
Wang T, Zhu L, Kanda H. Ti3C2 MXene-TiO2 hybrid-modified U-bend fiberoptic sensor for improved refractive index sensitivity and ammonia detection. Sens Actuators B. 2023;393:134136.
CrossRef Google scholar
[11]
Yuvaraja S, Surya SG, Chernikova V, et al. Realization of an ultrasensitive and highly selective OFET NO2 sensor: the synergistic combination of PDVT-10 polymer and porphyrin-MOF. ACS Appl Mater Interfaces. 2020;12(16):18748-18760.
CrossRef Google scholar
[12]
Zhang H, Zhang ZB, Li Z, Han HJ, Song WG, Yi JX. A chemiresistive-potentiometric multivariate sensor for discriminative gas detection. Nat Commun. 2023;14:3495.
CrossRef Google scholar
[13]
Potyrailo RA. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem Soc Rev. 2017;46(17):5311-5346.
CrossRef Google scholar
[14]
Zheng F, Chen Z, Li J, et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci. 2022;9(14):2105231.
CrossRef Google scholar
[15]
Chen Z, Li J, Li T, et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev. 2022;9:nwac104.
CrossRef Google scholar
[16]
Yang ZJ, Liu A, Wang CL, et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019;4(5):1261-1269.
CrossRef Google scholar
[17]
Kim SJ, Koh HJ, Ren CE, et al. Metallic Ti3C2TX MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12(2):986-993.
CrossRef Google scholar
[18]
Shuck CE, Han MK, Maleski K, et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater. 2019;2(6):3368-3376.
CrossRef Google scholar
[19]
Majhi SM, Ali A, Greish YE, et al. Accordion-like-Ti3C2 MXene-based gas sensors with sub-ppm level detection of acetone at room temperature. ACS Appl Electron Mater. 2022;4(8):4094-4103.
CrossRef Google scholar
[20]
Pei YY, Zhang XL, Hui ZY, et al. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano. 2021;15(3):3996-4017.
CrossRef Google scholar
[21]
Habib T, Zhao XF, Shah SA, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater Appl. 2019;3(1):8.
CrossRef Google scholar
[22]
Liu ZH, Han D, Liu LL, et al. Ultrasensitive ammonia gas sensor based on Ti3C2Tx/Ti3AlC2 planar composite at room temperature. Sens Actuators B Chem. 2023;378:133149.
CrossRef Google scholar
[23]
Wang QM, Liu ZH, Lu QF. Lignin modified Ti3C2Tx assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater. Colloid Surface A. 2023;656:130371.
CrossRef Google scholar
[24]
Lee E, Mohammadi AV, Prorok BC, Yoon YS, Beidaghi M, Kim DJ. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces. 2017;9(42):37184-37190.
CrossRef Google scholar
[25]
Budnyak TM, Slabon A, Sipponen MH. Lignin-inorganic interfaces: chemistry and applications from adsorbents to catalysts and energy storage materials. ChemSusChem. 2020;13(17):4344-4355.
CrossRef Google scholar
[26]
Milczarek G, Rebis T, Fabianska J. One-step synthesis of lignosulfonate-stabilized silver nanoparticles. Colloids Surf B Biointerfaces. 2013;105:335-341.
CrossRef Google scholar
[27]
Saratale RG, Saratale GD, Ghodake G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol. 2019;128:391-400.
CrossRef Google scholar
[28]
Guo FQ, Feng C, Zhang Z, et al. A room-temperature NO2 sensor based on Ti3C2TX MXene modified with sphere-like CuO. Sens. Actuators B. 2023;375:132885.
CrossRef Google scholar
[29]
Li H-P, Wen J, Ding S-M, et al. Synergistic coupling of 0D–2D heterostructure from ZnO and Ti3C2Tx MXene-derived TiO2 for boosted NO2 detection at room temperature. Nano Mater Sci. 2023;5(4):421-428.
CrossRef Google scholar
[30]
Koh HJ, Kim SJ, Maleski K, et al. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sen. 2019;4(5):1365-1372.
CrossRef Google scholar
[31]
Laurichesse S, Avérous L. Chemical modification of lignins: towards biobased polymers. Prog Polym Sci. 2014;39(7):1266-1290.
CrossRef Google scholar
[32]
Chen WY, Lai SN, Yen CC, Jiang XF, Peroulis D, Stanciu LA. Surface functionalization of Ti3C2TX MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano. 2020;14(9):11490-11501.
CrossRef Google scholar
[33]
Tang J, Mathis T, Zhong X, et al. Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv Energy Mater. 2021;11:2003025.
CrossRef Google scholar
[34]
Mullani NB, Kumbhar DD, Lee DH, et al. Surface modification of a titanium carbide MXene memristor to enhance memory window and low-power operation. Adv Funct Mater. 2023;33(26):2300343.
CrossRef Google scholar
[35]
Lotfy VF, Basta AH. A green approach to the valorization of kraft lignin for the production of nanocomposite gels to control the release of fertilizer. Biofuels Bioprod Biorefin. 2022;16(2):488-498.
CrossRef Google scholar
[36]
Hao NX, Wei Y, Wang JL, et al. In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv. 2018;8(37):20576-20584.
CrossRef Google scholar
[37]
Natu V, Benchakar M, Canaff C, Habrioux A, Célérier S, Barsoum MW. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter. 2021;4(4):1224-1251.
CrossRef Google scholar
[38]
Näslund L-Å, Persson POÅ, Rosen J. X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials. J Phys Chem. 2020;124(50):27732-27742.
CrossRef Google scholar
[39]
Hermawan A, Zhang B, Taufik A, et al. CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater. 2020;3(5):4755-4766.
CrossRef Google scholar
[40]
Han MK, Yin XW, Wu H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces. 2016;8(32):21011-21019.
CrossRef Google scholar
[41]
Chen WY, Jiang XF, Lai SN, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302.
CrossRef Google scholar
[42]
Yao L, Tian X, Cui X, Zhao R, Xiao X, Wang Y. Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. J Mater Sci Mater Electron. 2021;32(23):27837-27848.
CrossRef Google scholar
[43]
Xu BZ, Zhu MS, Zhang WC, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater. 2016;28(17):3333-3339.
CrossRef Google scholar
[44]
Hu Y, Li T, Zhang J, Guo J, Wang W, Zhang D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sens Actuators B. 2022;352:130912.
CrossRef Google scholar
[45]
Pan W, Zhang Y, Zhang D. Self-assembly fabrication of titanium dioxide nanospheres-decorated tungsten diselenide hexagonal nanosheets for ethanol gas sensing application. Appl Surf Sci. 2020;527:146781.
CrossRef Google scholar
[46]
Jian Y, Qu D, Guo L, et al. The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front Chem Sci Eng. 2021;15(3):505-517.
CrossRef Google scholar
[47]
Riazi H, Taghizadeh G, Soroush M. MXene-based nanocomposite sensors. ACS Omega. 2021;6(17):11103-11112.
CrossRef Google scholar
[48]
Xu Q, Zong B, Li Q, Fang X, Mao S, Ostrikov K. H2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti3C2Tx MXene field-effect transistors. J Hazard Mater. 2022;424(Pt B):127492.
CrossRef Google scholar
[49]
Bochenkov V, Sergeev G. Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In: Umar Y-BH A, ed. Metal Oxide Nanostructures and their Applications. American Scientific Publishers; 2010: 31-52.
[50]
He T, Liu W, Lv T, et al. MXene/SnO2 heterojunction based chemical gas sensors. Sens Actuators B. 2021;329:129275.
CrossRef Google scholar
[51]
Cho SY, Lee Y, Koh HJ, et al. Superior chemical sensing performance of black phosphorus: comparison with MoS and graphene. Adv Mater. 2016;28(32):7020-7028.
CrossRef Google scholar
[52]
Bandgar DK, Navale ST, Khuspe GD, Pawar SA, Mulik RN, Patil VB. Novel route for fabrication of nanostructured α-FeO gas sensor. Mat Sci Semicond Process. 2014;17:67-73.
CrossRef Google scholar
[53]
Shimizu Y. SnO2 gas sensor. In: Kreysa G, OtaK-I, Savinell RF, eds. Encyclopedia of Applied Electrochemistry. New York: Springer; 2014: 1974-1982.
CrossRef Google scholar
[54]
Dipak P, Tiwari DC, Samadhiya A, et al. Synthesis of polyaniline (printable nanoink) gas sensor for the detection of ammonia gas. J Mater Sci Mater Electron. 2020;31:22512-22521.
CrossRef Google scholar
[55]
Aadil KR, Barapatre A, Meena AS, Jha H. Hydrogen peroxide sensing and cytotoxicity activity of acacia lignin stabilized silver nanoparticles. Int J Biol Macromol. 2016;82:39-47.
CrossRef Google scholar
[56]
Liu Z-H, Hao N, Shinde S, et al. Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chem. 2019;21(2):245-260.
CrossRef Google scholar
[57]
Han XB, Jing GY, Zhang XZ, et al. Bending-induced conductance increase in individual semiconductor nanowires and nanobelts. Nano Res. 2009;2(7):553-557.
CrossRef Google scholar
[58]
Navaraj WT, Gupta S, Lorenzelli L, Dahiya R. Wafer scale transfer of ultrathin silicon chips on flexible substrates for high performance bendable systems. Adv Electron Mater. 2018;4(4):1700277.
CrossRef Google scholar
[59]
Zheng W, Huang WC, Gao F, et al. Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS. Chem Mater. 2018;30(17):6063-6070.
CrossRef Google scholar
[60]
Xia XD, Yang BC, Zhang X, Zhou CH. Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending. Mater Res Express. 2015;2(7):075009.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/