Phosphorus-based anodes for fast-charging alkali metal ion batteries

Xuexia Lan, Zhen Li, Yi Zeng, Cuiping Han, Jing Peng, Hui-Ming Cheng

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (5) : e12452. DOI: 10.1002/eom2.12452
REVIEW

Phosphorus-based anodes for fast-charging alkali metal ion batteries

Author information +
History +

Abstract

Advancing fast-charging technology is an important strategy for the development of alkali metal ion batteries (AMIBs). The exploitation of a new generation of anode material system with high-rate performance, high capacity, and low risk of lithium/sodium/potassium plating is critical to realize fast-charging capability of AMIBs while maintaining high energy density and safety. Among them, phosphorus-based anodes including phosphorus anodes and metal phosphide anodes have attracted wide attention, due to their high theoretical capacities, safe reaction voltages, and natural abundance. In this review, we summarize the research progress of different phosphorus-based anodes for fast-charging AMIBs, including material properties, mechanisms for storing alkali metal ions, key challenges and solution strategies for achieving fast-charging capability. Moreover, the future development directions of phosphorus-based anodes in fast-charging AMIBs are highlighted.

Keywords

alkali metal ion batteries / fast-charging / ion diffusion / phosphorus-based anodes

Cite this article

Download citation ▾
Xuexia Lan, Zhen Li, Yi Zeng, Cuiping Han, Jing Peng, Hui-Ming Cheng. Phosphorus-based anodes for fast-charging alkali metal ion batteries. EcoMat, 2024, 6(5): e12452 https://doi.org/10.1002/eom2.12452

References

[1]
Xiao J, Li QY, Bi YJ, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy. 2020;5(8):561-568.
CrossRef Google scholar
[2]
Wang CY, Liu T, Yang XG, et al. Fast charging of energy-dense lithium-ion batteries. Nature. 2022;611(7936):485-490.
CrossRef Google scholar
[3]
Dantas R, Ribeiro C, Souto M. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chem Commun. 2023;60(2):138-149.
CrossRef Google scholar
[4]
Qiao Y, Zhao HP, Shen YL, et al. Recycling of graphite anode from spent lithium-ion batteries: advances and perspectives. EcoMat. 2023;5(4):e12321.
CrossRef Google scholar
[5]
Zhou JW, Liu Y, Zhang SL, Zhou TF, Guo ZP. Metal chalcogenides for potassium storage. Inf Dent. 2020;2(3):437-465.
CrossRef Google scholar
[6]
Yang Y, Zhu H, Xiao JF, et al. Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv Mater. 2020;32(12):1905295.
CrossRef Google scholar
[7]
Zhang SP, Yang D, Tan HT, Feng YZ, Rui XH, Yu Y. Advances in K-Q (Q = S, Se and SexSy) batteries. Mater Today. 2020;39:9-22.
CrossRef Google scholar
[8]
Li SQ, Wang K, Zhang GF, et al. Fast charging anode materials for lithium-ion batteries: current status and perspectives. Adv Funct Mater. 2022;32(23):2200796.
CrossRef Google scholar
[9]
Tomaszewska A, Chu ZY, Feng XN, et al. Lithium-ion battery fast charging: a review. Etransportation. 2019;1:100011.
CrossRef Google scholar
[10]
Liu YY, Zhu YY, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540-550.
CrossRef Google scholar
[11]
Liu T, Wang XJ, Han Y, Wu YQ, Zhang LY, Yu JG. Fabrication of NiMn2O4/C hollow spheres with a trilaminar shell structure as an anode material for sodium-ion batteries. Chem Commun. 2023;59(100):14811-14814.
CrossRef Google scholar
[12]
Hao ZQ, Dimov N, Chang JK, Okada S. Tin phosphide-carbon composite as a high-performance anode active material for sodium-ion batteries with high energy density. J Energy Chem. 2022;64:463-474.
CrossRef Google scholar
[13]
Wang Y, Niu P, Li JZ, Wang SL, Li L. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Mater. 2021;34:436-460.
CrossRef Google scholar
[14]
Yi XH, Rao AM, Zhou J, Lu BA. Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nano-Micro Lett. 2023;15(1):200.
CrossRef Google scholar
[15]
Tan L, Lan X, Chen J, Zhang H, Hu R, Zhu M. LiF-induced stable solid electrolyte interphase for a wide temperature SnO2-based anode extensible to −50°C. Adv Energy Mater. 2021;11(39):2101855.
CrossRef Google scholar
[16]
Hubble D, Brown DE, Zhao YZ, et al. Liquid electrolyte development for low-temperature lithium-ion batteries. Energ Environ Sci. 2022;15(2):550-578.
CrossRef Google scholar
[17]
Chen QZ, Wei SS, Zhu RL, et al. Mechanochemical reduction of clay minerals to porous silicon nanoflakes for high-performance lithium-ion battery anodes. Chem Commun. 2023;59(96):14297-14300.
CrossRef Google scholar
[18]
Meng F, Xiong X, Tan L, Yuan B, Hu R. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review. Energy Storage Mater. 2022;44:390-407.
CrossRef Google scholar
[19]
Dong WJ, Ye B, Cai MZ, et al. Superwettable high-voltage LiCoO2 for low- temperature lithium ion batteries. ACS Energy Lett. 2023;8(2):881-888.
CrossRef Google scholar
[20]
Burns JC, Stevens DA, Dahn JR. In-situ detection of lithium plating using high precision coulometry. J Electrochem Soc. 2015;162(6):A959-A964.
CrossRef Google scholar
[21]
Wang MS, Liang HM, Wang L, et al. First AIE probe for lithium-metal anodes. Matter. 2022;5(10):3530-3540.
CrossRef Google scholar
[22]
Zhang N, Deng T, Zhang S, et al. Critical review on low-temperature Li-ion/metal batteries. Adv Mater. 2022;34(15):2107899.
CrossRef Google scholar
[23]
Ma T, Ni Y, Wang Q, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew Chem Int Ed. 2022;61(39):e202207927.
CrossRef Google scholar
[24]
Zhu Y, Cao KY, Cheng WK, et al. A non-Newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat. 2021;3(4):e12126.
CrossRef Google scholar
[25]
Zhang H, Wang L, Li H, He XM. Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries. ACS Energy Lett. 2021;6(10):3719-3724.
CrossRef Google scholar
[26]
Yue XY, Zhang J, Dong YT, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew Chem Int Ed. 2023;62(19):e2023022.
CrossRef Google scholar
[27]
Sun CC, Ji X, Weng ST, et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv Mater. 2022;34(43):2206020.
CrossRef Google scholar
[28]
Zhao L, Wu Z, Wang Z, Bai Z, Sun W, Sun K. Regulating solvation structures enabled by the mesoporous material MCM-41 for rechargeable lithium metal batteries. ACS Nano. 2022;16(12):20891-20901.
CrossRef Google scholar
[29]
Cao L, Len Z, Xu X, et al. Manipulating molecular structure to trigger ultrafast and long-life potassium storage of Fe0.4Ni0.6S solid solution. Small. 2023;19(36):2302435.
CrossRef Google scholar
[30]
Chang CB, Tuan HY. Recent progress on Sb- and Bi-based chalcogenide anodes for potassium-ion batteries. Chem-Asian J. 2022;17(12):e202200170.
CrossRef Google scholar
[31]
Peng J, Liu YH, Lv HF, et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat Chem. 2021;13(12):1235-1240.
CrossRef Google scholar
[32]
Lee SH, Cho Y, Jeon YP, et al. Sustainable eco-friendly sub-micron NaCl crystal powder-assisted method to synthesize SiOx/C as anode materials originated from rice husk for lithium-ion batteries. EcoMat. 2023;5(11):e12401.
CrossRef Google scholar
[33]
Xing JX, Chen T, Yi LY, et al. Endowing Cu foil self-wettable in molten lithium: a roll-to-roll wet coating strategy to fabricate high-performance ultrathin lithium metal anodes. Energy Storage Mater. 2023;63:103067.
CrossRef Google scholar
[34]
Liu SC, Zhu H, Zhang BH, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater. 2020;32(26):39347.
CrossRef Google scholar
[35]
Kuang M, Wang Y, Fang W, et al. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv Mater. 2020;32(26):2002189.
CrossRef Google scholar
[36]
Liu DS, Jin F, Huang AJ, et al. Phosphorus-doping-induced surface vacancies of 3D Na2Ti3O7 nanowire arrays enabling high-rate and long-life sodium storage. Chem-Eur J. 2019;25(65):14881-14889.
CrossRef Google scholar
[37]
Du WC, Geng HB, Yang Y, Zhang YF, Rui XH, Li CC. Pristine graphene for advanced electrochemical energy applications. J Power Sources. 2019;437:226899.
CrossRef Google scholar
[38]
Zeng LC, Huang LC, Zhu JH, et al. Phosphorus-based materials for high-performance alkaline metal ion batteries: progress and prospect. Small. 2022;18(39):2201808.
CrossRef Google scholar
[39]
Wang B, Ang EH, Yang Y, et al. Interlayer engineering of molybdenum trioxide toward high-capacity and stable sodium ion half/full batteries. Adv Funct Mater. 2020;30(28):2001708.
CrossRef Google scholar
[40]
Zhao DY, Zhao RZ, Dong SH, et al. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energ Environ Sci. 2019;12(8):2422-2432.
CrossRef Google scholar
[41]
Wu Y, Huang HB, Feng YZ, Wu ZS, Yu Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv Mater. 2019;31(50):1901414.
CrossRef Google scholar
[42]
Shen LF, Wang Y, Lv HF, et al. Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv Mater. 2018;30(51):1804378.
CrossRef Google scholar
[43]
Ang EH, Dinh KN, Sun XL, et al. Highly efficient and stable hydrogen production in all pH range by two-dimensional structured metal-doped tungsten semicarbides. Research. 2019;2019:4029516.
CrossRef Google scholar
[44]
Zhang JL, Wang WH, Li BH. Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase. Chem Eng J. 2020;392:123810.
CrossRef Google scholar
[45]
Pan EZ, Jin YH, Zhao CC, et al. Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries. Appl Surf Sci. 2019;475:12-19.
CrossRef Google scholar
[46]
Wang WH, Zhang JL, Yu DYW, Li Q. Improving the cycling stability of Sn4P3 anode for sodium-ion battery. J Power Sources. 2017;364:420-425.
CrossRef Google scholar
[47]
Weiss M, Ruess R, Kasnatscheew J, et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv Energy Mater. 2021;11(33):2101126.
CrossRef Google scholar
[48]
Jiang M, Danilov DL, Eichel RA, Notten PHL. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv Energy Mater. 2021;11(48):2103005.
CrossRef Google scholar
[49]
Cao J, Zhang DD, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy. 2021;89:106322.
CrossRef Google scholar
[50]
Tan DHS, Chen YT, Yang HD, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science. 2021;373(6562):1494-1499.
CrossRef Google scholar
[51]
Chen H, Yang YF, Boyle DT, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy. 2021;6(8):790-798.
CrossRef Google scholar
[52]
Yan J, Li HM, Wang KL, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv Energy Mater. 2021;11(21):2003911.
CrossRef Google scholar
[53]
Liu C, Han MY, Cao Y, et al. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Mater. 2021;37:417-423.
CrossRef Google scholar
[54]
Sun J, Zheng G, Lee H-W, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014;14(8):4573-4580.
CrossRef Google scholar
[55]
Zhu J, Xiao G, Zuo X. Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 2020;12(1):120.
CrossRef Google scholar
[56]
Li WF, Yang YM, Zhang G, Zhang YW. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015;15(3):1691-1697.
CrossRef Google scholar
[57]
Wang D, Guo GC, Wei XL, Liu LM, Zhao SJ. Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries. J Power Sources. 2016;302:215-222.
CrossRef Google scholar
[58]
Yue LC, Liang J, Wu ZG, et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J Mater Chem A. 2021;9(20):11879-11907.
CrossRef Google scholar
[59]
Li ZF, Zheng Y, Liu QY, et al. Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J Mater Chem A. 2020;8(37):19113-19132.
CrossRef Google scholar
[60]
Walter M, Bodnarchuk MI, Kravchyk KV, Kovalenko MV. Evaluation of metal phosphide nanocrystals as anode materials for Na-ion batteries. Chimia. 2015;69(12):724-728.
CrossRef Google scholar
[61]
Li KX, Tong Y, He JF, Liu XY, Chen PZ. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. Mater Horiz. 2023;10(11):5277-5287.
CrossRef Google scholar
[62]
Zhang WC, Mao JF, Li SA, Chen ZX, Guo ZP. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc. 2017;139(9):3316-3319.
CrossRef Google scholar
[63]
Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci. 2019;6(9):1801354.
CrossRef Google scholar
[64]
Feng WC, Wang H, Jiang YL, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater. 2022;12(7):2103343.
CrossRef Google scholar
[65]
Capone I, Aspinall J, Lee HJ, Xiao AW, Ihli J, Pasta M. A red phosphorus-graphite composite as anode material for potassium-ion batteries. Mater Today Energy. 2021;21:100840.
CrossRef Google scholar
[66]
Xiong PX, Bai PX, Tu SB, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small. 2018;14(33):1802140.
CrossRef Google scholar
[67]
Zhou JH, Shi QT, Ullah S, et al. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Adv Funct Mater. 2020;30(49):2004648.
CrossRef Google scholar
[68]
Fu YQ, Wei QL, Zhang GX, Sun SH. Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv Energy Mater. 2018;8(13):1702849.
[69]
Park CM, Sohn HJ. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater. 2007;19(18):2465-2468.
CrossRef Google scholar
[70]
Yang WW, Lu YX, Zhao CX, Liu HL. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett. 2020;16(1):89-98.
CrossRef Google scholar
[71]
Mayo M, Griffith KJ, Pickard CJ, Morris AJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28(7):2011-2021.
CrossRef Google scholar
[72]
Marbella LE, Evans ML, Groh MF, et al. Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries. J Am Chem Soc. 2018;140(25):7994-8004.
CrossRef Google scholar
[73]
Povia M, Sottmann J, Portale G, Knudsen KD, Margadonna S, Sartori S. Operando SAXS/WAXS on the a-P/C as the anode for Na-ion batteries. J Phys Chem C. 2018;122(11):5917-5923.
CrossRef Google scholar
[74]
Peng CX, Chen HX, Zhong GM, et al. Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy. 2019;58:560-567.
CrossRef Google scholar
[75]
Yang H, He FX, Liu FF, et al. Simultaneous catalytic acceleration of white phosphorus polymerization and red phosphorus potassiation for high-performance potassium-ion batteries. Adv Mater. 2023;36(3):2306512.
CrossRef Google scholar
[76]
Jung SC, Han YK. Thermodynamic and kinetic origins of lithiation-induced amorphous-to-crystalline phase transition of phosphorus. J Phys Chem C. 2015;119(22):12130-12137.
CrossRef Google scholar
[77]
Nazri G. Preparation, structure and ionic-conductivity of lithium phosphide. Solid State Ion. 1989;34(1-2):97-102.
CrossRef Google scholar
[78]
Jin HC, Wang HY, Qi ZK, et al. A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew Chem Int Ed. 2020;59(6):2318-2322.
CrossRef Google scholar
[79]
Liu X, Xiao BW, Daali A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries. ACS Energy Lett. 2021;6(2):547-556.
CrossRef Google scholar
[80]
He SA, Liu Q, Cui Z, et al. Red phosphorus anchored on nitrogen-doped carbon bubble-carbon nanotube network for highly stable and fast-charging lithium-ion batteries. Small. 2022;18(7):2105866.
CrossRef Google scholar
[81]
Guo X, Zhang WX, Zhang JQ, et al. Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano. 2020;14(3):3651-3659.
CrossRef Google scholar
[82]
Zhao RZ, Qian Z, Liu ZY, et al. Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy. 2019;65:104037.
CrossRef Google scholar
[83]
Shuai HL, Ge P, Hong WW, et al. Electrochemically exfoliated phosphorene-graphene hybrid for sodium-ion batteries. Small Methods. 2019;3(2):1800328.
CrossRef Google scholar
[84]
Sun LQ, Li MJ, Sun K, Yu SH, Wang RS, Xie HM. Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C. 2012;116(28):14772-14779.
CrossRef Google scholar
[85]
Wrogemann JM, Haneke L, Ramireddy T, et al. Advanced dual-ion batteries with high-capacity negative electrodes incorporating black phosphorus. Adv Sci. 2022;9(20):2201116.
CrossRef Google scholar
[86]
Li MS, Li WH, Hu YF, et al. New insights into the high-performance black phosphorus anode for lithium-ion batteries. Adv Mater. 2021;33(35):2101259.
CrossRef Google scholar
[87]
Zhang Y, Wang HW, Luo ZZ, et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv Energy Mater. 2016;6(12):1600453.
CrossRef Google scholar
[88]
Jain R, Singh Y, Cho SY, et al. Ambient stabilization of few layer phosphorene via noncovalent functionalization with surfactants: systematic 2D NMR characterization in aqueous dispersion. Chem Mater. 2019;31(8):2786-2794.
CrossRef Google scholar
[89]
Zhang TM, Wan YY, Xie HY, et al. Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J Am Chem Soc. 2018;140(24):7561-7567.
CrossRef Google scholar
[90]
Fan FR, Wang RX, Zhang H, Wu WZ. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev. 2021;50(19):10983-11031.
CrossRef Google scholar
[91]
Ryder CR, Wood JD, Wells SA, et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem. 2016;8(6):597-602.
CrossRef Google scholar
[92]
Doganov RA, O'Farrell ECT, Koenig SP, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat Commun. 2015;6(1):6647.
CrossRef Google scholar
[93]
Wood JD, Wells SA, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014;14(12):6964-6970.
CrossRef Google scholar
[94]
Pei JJ, Gai X, Yang J, et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat Commun. 2016;7(1):10450.
CrossRef Google scholar
[95]
Xu YJ, Yuan J, Zhang K, et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater. 2017;27(38):1702211.
CrossRef Google scholar
[96]
Abate Y, Akinwande D, Gamage S, et al. Recent progress on stability and passivation of black phosphorus. Adv Mater. 2018;30(29):1704749.
CrossRef Google scholar
[97]
Zhao YT, Wang HY, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed. 2016;55(16):5003-5007.
CrossRef Google scholar
[98]
Liu YJ, Gao PF, Zhang TM, et al. Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew Chem Int Ed. 2019;58(5):1479-1483.
CrossRef Google scholar
[99]
Wang HY, Hu K, Li Z, et al. Black phosphorus nanosheets passivation using a tripeptide. Small. 2018;14(35):1801701.
CrossRef Google scholar
[100]
Zhang WJ, Dahbi M, Amagasa S, Yamada Y, Komaba S. Iron phosphide as negative electrode material for Na-ion batteries. Electrochem Commun. 2016;69:11-14.
CrossRef Google scholar
[101]
Guo CY, Liu XJ, Gao LF, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl Catal B. 2020;263:118296.
CrossRef Google scholar
[102]
Fullenwarth J, Darwiche A, Soares A, Donnadieu B, Monconduit L. NiP3: a promising negative electrode for Li- and Na-ion batteries. J Mater Chem A. 2014;2(7):2050-2059.
CrossRef Google scholar
[103]
Liu ZL, Yang SJ, Sun BX, Chang XH, Zheng J, Li XG. A peapod-like CoP@C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew Chem Int Ed. 2018;57(32):10187-10191.
CrossRef Google scholar
[104]
Li WW, Ke LB, Wei YQ, et al. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A. 2017;5(9):4413-4420.
CrossRef Google scholar
[105]
Fan XL, Mao JF, Zhu YJ, et al. Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv Energy Mater. 2015;5(18):1500174.
CrossRef Google scholar
[106]
Xiao YY, Liu FS, Shi H, et al. Construction of ultrastable ultrathin black phosphorus nanodisks hybridized with Fe3O4 nanoclusters and iron (V)-oxo complex for efficient potassium storage. Adv Mater. 2023;2301772.
CrossRef Google scholar
[107]
Liu XB, Yu MX, Wu SG, Gong JB. Composite nanoarchitectonics for efficient lithium storage by encapsulating black phosphorus quantum dots in cobalt/iron based Prussian blue analogues. J Alloys Compd. 2023;969:172291.
CrossRef Google scholar
[108]
Zhang SJ, Zhang YM, Zhang ZY, et al. Bi works as a Li reservoir for promoting the fast-charging performance of phosphorus anode for Li-ion batteries. Adv Energy Mater. 2022;12(19):2103888.
CrossRef Google scholar
[109]
Wang JQ, Liu W, Wang CQ. Superior rate and long-lived performance of few-layered black phosphorus-based hybrid anode for lithium-ion batteries. Electrochim Acta. 2022;403:139697.
CrossRef Google scholar
[110]
Cheng JY, Gao LF, Li T, et al. Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 2020;12(1):179.
CrossRef Google scholar
[111]
Sun YM, Wang L, Li YB, et al. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule. 2019;3(4):1080-1093.
CrossRef Google scholar
[112]
Zou JY, Cai ZY, Lai YJ, et al. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano. 2021;15(4):7340-7347.
CrossRef Google scholar
[113]
Tang L, Xu RZ, Tan JY, et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv Funct Mater. 2021;31(5):2006941.
CrossRef Google scholar
[114]
Zhong J, Wang T, Wang L, et al. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 2022;14(1):50.
CrossRef Google scholar
[115]
Liu HD, Zhu ZY, Yan QZ, et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature. 2020;585(7823):63-67.
CrossRef Google scholar
[116]
Xia J, Liu L, Jamil S, et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 2019;17:1-11.
CrossRef Google scholar
[117]
Lan XX, Cui J, Xiong XY, He JY, Yu HC, Hu RZ. Multiscale observations of inhomogeneous bilayer SEI film on a conversion-alloying SnO2 anode. Small Methods. 2021;5(12):2101111.
CrossRef Google scholar
[118]
Wu XM, Wang H, Zhao ZL, Huang B. Interstratification-assembled 2D black phosphorene and V(2)CT(x)MXene as superior anodes for boosting potassium-ion storage. J Mater Chem A. 2020;8(25):12705-12715.
CrossRef Google scholar
[119]
Tan J, Matz J, Dong P, Shen JF, Ye MX. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater. 2021;11(16):2100046.
CrossRef Google scholar
[120]
Jin HC, Xin S, Chuang CH, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science. 2020;370(6513):192-197.
CrossRef Google scholar
[121]
Matsuoka O, Hiwara A, Omi T, et al. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell. J Power Sources. 2002;108(1–2):128-138.
CrossRef Google scholar
[122]
Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries. Electrochim Acta. 2002;47(9):1423-1439.
CrossRef Google scholar
[123]
Tang JL, Kye DK, Pol VG. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries. J Power Sources. 2018;396:476-482.
CrossRef Google scholar
[124]
Sun L, Zhang Y, Zhang DY, Liu JG, Zhang YH. Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Res. 2018;11(5):2733-2745.
CrossRef Google scholar
[125]
Zhang SJ, Liu C, Wang HL, et al. A covalent P-C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes. ACS Nano. 2021;15(2):3365-3375.
CrossRef Google scholar
[126]
Zheng ZM, Wu HH, Liu HD, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):9545-9561.
CrossRef Google scholar
[127]
Wang CP, Yan JT, Li TY, et al. A coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew Chem Int Ed. 2021;60(47):25013-25019.
CrossRef Google scholar
[128]
Liu ZL, Yang SL, Sun BX, Yang PP, Zheng J, Li XG. Low-temperature synthesis of honeycomb CuP2@C in ZnCl2 molten salt for high-performance lithium ion batteries. Angew Chem Int Ed. 2020;59(5):1975-1979.
CrossRef Google scholar
[129]
Guo KK, Xi BJ, Wei RC, Li HB, Feng JK, Xiong SL. Hierarchical microcables constructed by CoP@C subset of carbon framework intertwined with carbon nanotubes for efficient lithium storage. Adv Energy Mater. 2020;10(12):1902913.
CrossRef Google scholar
[130]
Liu YH, Liu QZ, Zhang AY, et al. Room-temperature pressure synthesis of layered black phosphorus graphene composite for sodium-ion battery anodes. ACS Nano. 2018;12(8):8323-8329.
CrossRef Google scholar
[131]
Liu S, Feng JK, Bian XF, Liu J, Xu H, An YL. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energ Environ Sci. 2017;10(5):1222-1233.
CrossRef Google scholar
[132]
Fu CM, Yang H, Feng GF, Wang LN, Liu TX. In-situ reducing synthesis of MoP@nitrogen-doped carbon nanofibers as an anode material for lithium/sodium-ion batteries. Electrochim Acta. 2020;358:136921.
CrossRef Google scholar
[133]
Liu QN, Hu Z, Liang YR, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed. 2020;59(13):5159-5164.
CrossRef Google scholar
[134]
Xiao W, Sun Q, Banis MN, et al. Understanding the critical role of binders in phosphorus/carbon anode for sodium-ion batteries through unexpected mechanism. Adv Funct Mater. 2020;30(32):2000060.
CrossRef Google scholar
[135]
Zhou JB, Liu XJ, Zhu LQ, et al. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem. 2020;6(1):221-233.
CrossRef Google scholar
[136]
Wu Y, Hu SH, Xu R, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019;19(2):1351-1358.
CrossRef Google scholar
[137]
Liu D, Huang XK, Qu DY, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 2018;52:1-10.
CrossRef Google scholar
[138]
Zhou SJ, Li J, Fu LC, et al. Black phosphorus/hollow porous carbon for high rate performance lithium-ion battery. Chem-ElectroChem. 2020;7(9):2184-2189.
CrossRef Google scholar
[139]
Zeng G, Hu X, Zhou BL, Chen JX, Cao CS, Wen ZH. Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale. 2017;9(38):14722-14729.
CrossRef Google scholar
[140]
Chen JM, Cheng Y, Zhang QB, et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus Co-doped hollow porous bowl-like carbon anodes. Adv Funct Mater. 2021;31(1):2007158.
CrossRef Google scholar
[141]
Zhou JB, Liu XY, Cai WL, et al. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater. 2017;29(29):1700214.
CrossRef Google scholar
[142]
Meng RJ, Huang JM, Feng YT, et al. Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv Energy Mater. 2018;8(26):1801514.
CrossRef Google scholar
[143]
Zheng WR, Lee J, Gao ZW, et al. Laser-assisted ultrafast exfoliation of black phosphorus in liquid with tunable thickness for Li-ion batteries. Adv Energy Mater. 2020;10(31):1903490.
CrossRef Google scholar
[144]
Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8(8):2277-2282.
CrossRef Google scholar
[145]
Li X, Han XP, Liu RZ, et al. Tannic acid-polypyrrole multifunctional coating layer enhancing the interface effect and efficient Li-ion transport of a phosphorus anode. Nanoscale. 2022;14(9):3625-3631.
CrossRef Google scholar
[146]
Sun JT, Liu C, Wang HL, et al. Core-shell structure of a polypyrrole-coated phosphorus/carbon nanotube anode for high-performance lithium-ion batteries. ACS Appl Energy Mater. 2021;4(4):4112-4118.
CrossRef Google scholar
[147]
Liu WL, Yuan XX, Yu XB. A core-shell structure of polydopamine-coated phosphorus-carbon nanotube composite for high-performance sodium-ion batteries. Nanoscale. 2018;10(35):16675-16682.
CrossRef Google scholar
[148]
Han MY, Zhang SJ, Cao Y, et al. A one-for-all strategy of polyimide coating layer for resolving the comprehensive issues of phosphorus anode. J Energy Chem. 2022;70:276-282.
CrossRef Google scholar
[149]
Zhang YP, Wang LL, Xu H, Cao JM, Chen D, Han W. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv Funct Mater. 2020;30(12):1909372.
CrossRef Google scholar
[150]
Lei WY, Liu YY, Jiao XX, et al. Improvement of cycling phosphorus-based anode with LiF-rich solid electrolyte interphase for reversible lithium storage. ACS Appl Energy Mater. 2019;2(4):2699-2707.
CrossRef Google scholar
[151]
Dahbi M, Yabuuchi N, Fukunishi M, et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/Interface. Chem Mater. 2016;28(6):1625-1635.
CrossRef Google scholar
[152]
Zhang WC, Wu ZB, Zhang J, et al. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy. 2018;53:967-974.
CrossRef Google scholar
[153]
Chen ZJ, Zhang T, Gao XY, et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv Mater. 2021;33(33):2101845.
CrossRef Google scholar
[154]
Wei YQ, Yao RZ, Liu XH, et al. Understanding the configurational entropy evolution in metal-phosphorus solid solution for highly reversible Li-ion batteries. Adv Sci. 2023;10(9):2300271.
CrossRef Google scholar
[155]
Li WW, Li XW, Liao J, et al. A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries. Energ Environ Sci. 2019;12(7):2286-2297.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/