Laser-induced graphene formation on recycled woods for green smart furniture

Han Ku Nam , Jungrak Choi , Tongmei Jing , Dongwook Yang , Younggeun Lee , Young-Ryeul Kim , Truong-Son Dinh Le , Byunggi Kim , Liandong Yu , Seung-Woo Kim , Inkyu Park , Young-Jin Kim

EcoMat ›› 2024, Vol. 6 ›› Issue (4) : e12447

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (4) : e12447 DOI: 10.1002/eom2.12447
RESEARCH ARTICLE

Laser-induced graphene formation on recycled woods for green smart furniture

Author information +
History +
PDF

Abstract

In the pursuit of carbon neutrality policies, the development of eco-friendly and intelligent furniture commands a significant role. However, the integration of non-biodegradable electronic components in smart furniture fabrication has led to substantial electronic waste. Here, we report a straightforward approach, the rapid production of Laser-Induced Graphene (LIG) on medium-density fiberboard (MDF), a prevalent recycled wood in furniture production. This LIG electrode is crafted with negligible material ablation in ambient air with the aid of femtosecond laser pulses, without requiring any additional materials, showcasing the highest electrical conductivity (2.781 Ω sq−1) among previously reported lignocellulosic materials-based LIG. The application of this LIG electrode for lighting, heating, and touch sensors displays sufficient performance for smart furniture implementation. For eco-conscious furniture, LIG-based human-machine interfaces are demonstrated on recycled woods for the facile control of smart devices, which will readily enable IoT-oriented smart sustainable furniture.

Keywords

direct laser writing / green / laser-induced-graphene / recycled wood / smart furniture

Cite this article

Download citation ▾
Han Ku Nam, Jungrak Choi, Tongmei Jing, Dongwook Yang, Younggeun Lee, Young-Ryeul Kim, Truong-Son Dinh Le, Byunggi Kim, Liandong Yu, Seung-Woo Kim, Inkyu Park, Young-Jin Kim. Laser-induced graphene formation on recycled woods for green smart furniture. EcoMat, 2024, 6(4): e12447 DOI:10.1002/eom2.12447

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang F, Harindintwali JD, Yuan Z, et al. Technologies and perspectives for achieving carbon neutrality. Innovation. 2021;2(4):1-22.

[2]

Chen JM. Carbon neutrality: toward a sustainable future. Innovation. 2021;2(3):1-2.

[3]

Arrow KJ, Cohen L, David PA, et al. A statement on the appropriate role for research and development in climate policy. The Economists' Voice. 2009; 6(10):1-4.

[4]

Lamb WF, Wiedmann T, Pongratz J, et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett. 2021;16(7):1-31.

[5]

Mehta S, Jha S, Liang H. Lignocellulose materials for supercapacitor and battery electrodes: a review. Renew Sustain Energy Rev. 2020;134(1):1-20.

[6]

Heräjärvi H, Kunttu J, Hurmekoski E, Hujala T. Outlook for modified wood use and regulations in circular economy. Holzforschung. 2020;74(4):334-343.

[7]

Chen C, Kuang Y, Zhu S, et al. Structure–property–function relationships of natural and engineered wood. Nat Rev Mater. 2020;5(9):642-666.

[8]

Ge S, Shi Y, Chen X, et al. Sustainable upcycling of plastic waste and wood fibers into high-performance laminated wood-polymer composite via one-step cell collapse and chemical bonding approach. Adv Compos Hybrid Mater. 2023;6(4):146.

[9]

Song J, Chen C, Zhu S, et al. Processing bulk natural wood into a high-performance structural material. Nature. 2018;554(7691):224-228.

[10]

Ye H, Shi Y, Bin XB, et al. Sustainable ultra-strong thermally conductive wood-based antibacterial structural materials with anti-corrosion and ultraviolet shielding. EcoMat. 2023;5(12):1-15.

[11]

Xiao S, Chen C, Xia Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science (1979). 2021;374(6566):465-471.

[12]

Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Adv Mater. 2016;28(26):5181-5187.

[13]

Ge S, Ouyang H, Ye H, Shi Y, Sheng Y, Peng W. High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Mater. 2023;6(1):44.

[14]

Ding Y, Pang Z, Lan K, et al. Emerging engineered wood for building applications. Chem Rev. 2023;123(5):1843-1888.

[15]

Mi R, Li T, Dalgo D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv Funct Mater. 2020;30(1):1-8.

[16]

Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science (1979). 2019;364(6442):760-763.

[17]

Geng A, Ning Z, Zhang H, Yang H. Quantifying the climate change mitigation potential of China's furniture sector: wood substitution benefits on emission reduction. Ecol Indic. 2019;103(1):363-372.

[18]

Epede MB, Wang D. Competitiveness and upgrading in global value chains: a multiple-country analysis of the wooden furniture industry. Forest Policy Econ. 2022;140(1):1-11.

[19]

Blažević D, Bukovčan M, Keser T, Nenadić K. Conceptual design of smart furniture: A case study. 30th International Conference on Organization and Technology of Maintenance (OTO 2021), vol. 369:353–363. 2022.

[20]

Krejcar O, Maresova P, Selamat A, et al. Smart furniture as a component of a smart city—definition based on key technologies specification. IEEE Access. 2019;7(1):94822-94839.

[21]

Wan J, Song J, Yang Z, et al. Highly anisotropic conductors. Adv Mater. 2017;29(41):1-9.

[22]

Guo H, Büchel M, Li X, Wäckerlin A, Chen Q, Burgert I. Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. J R Soc Interface. 2018;15(142):1-9.

[23]

Du B, Jiang J, Li J, Zhu W. Effects of ZnO magnetron sputtering on surface charge and flashover voltage of oil-impregnated paper. High Voltage. 2019;4(4):308-315.

[24]

Lin F, Qiu Y, Zheng X, et al. One-pot mechanochemical assembly of lignocellulose nanofiber/graphite nanocomposites for wearable electronic devices. Chem Eng J. 2022;437(1):135286.

[25]

Li W, Liu Q, Zhang Y, et al. Biodegradable materials and green processing for green electronics. Adv Mater. 2020;32(33):1-40.

[26]

Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2014;43(2):588-610.

[27]

Ye R, Chyan Y, Zhang J, et al. Laser-induced graphene formation on wood. Adv Mater. 2017;29(37):1-7.

[28]

Ye R, James DK, Tour JM. Laser-induced graphene: from discovery to translation. Adv Mater. 2019;31(1):1-15.

[29]

Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano. 2018;12(3):2176-2183.

[30]

Trusovas R, Ratautas K, Račiukaitis G, Niaura G. Graphene layer formation in pinewood by nanosecond and picosecond laser irradiation. Appl Surf Sci. 2019;471(31):154-161.

[31]

Le TSD, Lee YA, Nam HK, et al. Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv Funct Mater. 2022;32(20):1-12.

[32]

Nam HK, Le TSD, Yang D, et al. Smart wooden home enabled by direct-written laser-induced graphene. Adv Mater Technol. 2023; 8(9):1-9.

[33]

Pinheiro T, Silvestre S, Coelho J, et al. Laser-induced graphene on paper toward efficient fabrication of flexible, planar electrodes for electrochemical sensing. Adv Mater Interfaces. 2021;8(22):1-12.

[34]

Jung Y, Min JK, Choi J, et al. Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl Mater Today. 2022;29(1):1-10.

[35]

Imbrogno A, Islam J, Santillo C, et al. Laser-induced graphene supercapacitors by direct laser writing of Cork natural substrates. ACS Appl Electron Mater. 2022;4(4):1541-1551.

[36]

Gomez-Martin A, Martinez-Fernandez J, Ruttert M, Winter M, Placke T, Ramirez-Rico J. Porous graphene-like carbon from fast catalytic decomposition of biomass for energy storage applications. ACS Omega. 2019;4(25):21446-21458.

[37]

Popov VV, Orlova TS, Magarino EE, Bautista MA, Martínez-Fernández J. Specific features of electrical properties of porous biocarbons prepared from beech wood and wood artificial fiberboards. Phys Solid State. 2011;53(2):276-283.

[38]

Dodevski V, Janković B, Stojmenović M, et al. Plane tree seed biomass used for preparation of activated carbons (AC) derived from pyrolysis. Modeling the activation process. Colloids Surf A Physicochem Eng Asp. 2017;522(1):83-96.

[39]

Tang MM, Bacon R. Carbonization of cellulose fibers—I low temperature pyrolysis. Carbon. 1964;2(3):211-220.

[40]

Bacon R, Tang MM. Carbonization of cellulose fibers—II physical property study. Carbon. 1964;2(3):221-225.

[41]

de Paiva MV, Bettini J, Colombari FM, Fazzio A, Strauss M. Unveiling electrical anisotropy of hierarchical pyrolytic biocarbons from wood cellulose. J Mater Sci. 2022;57(48):21980-21995.

[42]

Lower L, Dey SC, Vook T, Nimlos M, Park S, Sagues WJ. Catalytic graphitization of biocarbon for lithium-ion anodes: a minireview. ChemSusChem. 2023;16(24):e202300729.

[43]

Chen C, Chen Y, Zhu S, et al. Catalyst-free in situ carbon nanotube growth in confined space via high temperature gradient. Research. 2018;2018(1):1-9.

[44]

Kim B, Nam HK, Watanabe S, et al. Selective laser ablation of metal thin films using ultrashort pulses. Int J Precis Eng Manuf Green Technol. 2021;8(3):771-782.

[45]

Le TSD, Park S, An J, Lee PS, Kim YJ. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for Green electronics. Adv Funct Mater. 2019;29(33):1-10.

[46]

Haller P, Beyer E, Wiedemann G, Panzner M, Wust H. Experimental study of the effect of a laser beam on the morphology of wood surfaces. Wood Compos Chem Int Symp. 2001;2001(1):1-10.

[47]

Roth P, Filippov AV. In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission. J Aerosol Sci. 1996;27(1):95-104.

[48]

Han X, Ye R, Chyan Y, et al. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl Nano Mater. 2018;1(9):5053-5061.

[49]

Dreimol CH, Guo H, Ritter M, et al. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat Commun. 2022;13(1):3680.

[50]

Miyakoshi R, Hayashi S, Terakawa M. Simultaneous laser-based graphitization and microstructuring of bamboo for supercapacitors derived from renewable resources. RSC Adv. 2022;12(46):29647-29652.

[51]

Kulyk B, Silva BFR, Carvalho AF, et al. Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interfaces. 2021;13(8):10210-10221.

[52]

Chyan Y, Cohen J, Wang W, Zhang C, Tour JM. Graphene Art. ACS Appl Nano Mater. 2019;2(5):3007-3011.

[53]

Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM. Laser-induced graphene triboelectric nanogenerators. ACS Nano. 2019;13(6):7166-7174.

[54]

Carvalho AF, Fernandes AJS, Martins R, Fortunato E, Costa FM. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv Mater Technol. 2020;5(12):1-8.

[55]

Silvestre SL, Pinheiro T, Marques AC, et al. Cork derived laser-induced graphene for sustainable green electronics. Flex Printed Electron. 2022;7(3):1-12.

[56]

Lin Y, Zhang Q, Deng Y, et al. Fabricating graphene and nanodiamonds from lignin by femtosecond laser irradiation. ACS Omega. 2021;6(49):33995-34002.

[57]

Mahmood F, Mahmood F, Zhang H, Lin J, Wan C. Laser-induced graphene derived from kraft lignin for flexible supercapacitors. ACS Omega. 2020;5(24):14611-14618.

[58]

Funayama R, Hayashi S, Terakawa M. Laser-induced graphitization of lignin/PLLA composite sheets for biodegradable triboelectric nanogenerators. ACS Sustain Chem Eng. 2023;11(7):3114-3122.

[59]

Pereira CR, Mölleken RE, de Souza FH, Capellari GS, Neto SC, Azevedo EC. Evaluation of MDF bonding with polyurethane of castor oil. Appl Adhes Sci. 2016;4(1):1-7.

[60]

Gutiérrez-Pardo A, Ramírez-Rico J, de Arellano-López AR, Martínez-Fernández J. Characterization of porous graphitic monoliths from pyrolyzed wood. J Mater Sci. 2014;49(22):7688-7696.

[61]

Chen Y, Long J, Zhou S, et al. UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Methods. 2019;3(10):1-9.

[62]

Miyamoto Y, Zhang H, Tománek D. Photoexfoliation of graphene from graphite: An ab initio study. Phys Rev Lett. 2010;104(20):1-4.

[63]

Sokolowski-Tinten K, Solis J, Bialkowski J, Siegel J, Afonso CN, von der Linde D. Dynamics of ultrafast phase changes in amorphous GeSb films. Phys Rev Lett. 1998;81(17):3679-3682.

[64]

Gaudin J, Peyrusse O, Chalupský J, et al. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses. Phys Rev B. 2012;86(2):24103.

[65]

Loh GC, Baillargeat D. Graphitization of amorphous carbon and its transformation pathways. J Appl Phys. 2013;114(3):1-7.

[66]

Vashisth A, Kowalik M, Gerringer JC, Ashraf C, Van Duin ACT, Green MJ. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl Nano Mater. 2020;3(2):1881-1890.

[67]

Dong Y, Rismiller SC, Lin J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon. 2016;104(1):47-55.

[68]

Wang Z, Wang G, Liu W, Hu B, Liu J, Zhang Y. Patterned laser-induced graphene for terahertz wave modulation. J Opt Soci Am B. 2020;37(2):546-551.

[69]

Sonderegger W, Niemz P. Thermal conductivity and water vapour transmission properties of wood-based materials. Eur J Wood Wood Prod. 2009;67(3):313-321.

[70]

Oh S, Lee S, Byun SH, et al. 3D shape-morphing display enabled by electrothermally responsive, stiffness-tunable liquid metal platform with stretchable electroluminescent device. Adv Funct Mater. 2023;33(24):1-14.

RIGHTS & PERMISSIONS

2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/