Prussian blue analogs photocatalyst promote the evolution of value-added platform compounds via Co—CN—Zn covalent bonds

Junming Shi, Guoyang Gao, Can Jin, Hongqing Wu, Weizhen Wang, Yulong An, Zhen Zhou, Zhanhua Huang, Wenshuai Chen

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (4) : e12441. DOI: 10.1002/eom2.12441
RESEARCH ARTICLE

Prussian blue analogs photocatalyst promote the evolution of value-added platform compounds via Co—CN—Zn covalent bonds

Author information +
History +

Abstract

Value-added conversion of lignocellulose is a sustainable approach. Photo-refining biomass is in line with current environmental protection strategies. However, photo-reforming biomass suffers from poor catalyst stability and low conversion efficiency. Here, we designed fructose as a lignocellulosic model. The heterogeneous structure of Prussian blue coating was constructed with a special covalent bond structure of Co—CN—Zn. This structure has a catalytic conversion mechanism that can accelerate electron transfer. Fructose was simultaneously converted to value-added platform compounds (5-HMF and formic acid) and gaseous fuels (CO, CH4) with a conversion rate of up to 92.5%, which is more than 1.7 times than that of catalysts without adding Prussian blue. Hydrogen transfer and carbon transfer on the carbon atoms of fructose facilitates the production and accelerates the spillover of CO from formic acid. This work provides new ideas for the development of Prussian blue catalysts and the conversion of pentose.

Keywords

biomass / covalent bond / heterojunctions / Prussian blue analog / value-added platform compounds

Cite this article

Download citation ▾
Junming Shi, Guoyang Gao, Can Jin, Hongqing Wu, Weizhen Wang, Yulong An, Zhen Zhou, Zhanhua Huang, Wenshuai Chen. Prussian blue analogs photocatalyst promote the evolution of value-added platform compounds via Co—CN—Zn covalent bonds. EcoMat, 2024, 6(4): e12441 https://doi.org/10.1002/eom2.12441

References

[1]
Kothari R, Tyagi VV, Pathak A. Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev. 2010;14(9):3164-3170.
CrossRef Google scholar
[2]
Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14(3):919-937.
CrossRef Google scholar
[3]
Khansary MA, Aroon MA, Shirazian S. Physical adsorption of CO2 in biomass at atmospheric pressure and ambient temperature. Environ Chem Lett. 2020;18(4):1423-1431.
CrossRef Google scholar
[4]
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841-845.
CrossRef Google scholar
[5]
Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106(9):4044-4098.
CrossRef Google scholar
[6]
Woo J, Stein C, Christian AH, Levin MD. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature. 2023;623(7985):77-82.
CrossRef Google scholar
[7]
Parveen F, Upadhyayula S. Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - a mechanistic and experimental study. Fuel Process Technol. 2017;162:30-36.
CrossRef Google scholar
[8]
Wang YY, Xie TT, Zhang JY, Dang BK, Li YY. Green fabrication of an ionic liquid-activated lignocellulose flame-retardant composite. Ind Crops Prod. 2022;178:114602.
CrossRef Google scholar
[9]
Qiu G, Huang C, Sun X, Chen B. Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem. 2019;21(14):3930-3939.
CrossRef Google scholar
[10]
Zhao R, Dong WY, Yang C, et al. Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052. Synth Syst Biotechnol. 2023;8(2):196-205.
CrossRef Google scholar
[11]
Tian J, Deng W, Zhang Z, et al. Discovery and remodeling of vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat Commun. 2023;14(1):7758.
CrossRef Google scholar
[12]
Cai B, Kang R, Guo D, Feng J, Ma T, Pan H. An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-hydroxymethylfurfural. Renew Energy. 2022;199:1629-1638.
CrossRef Google scholar
[13]
Raut SU, Bhagat PR. Sugarcane bio-refinery products: an efficient one umbrella approach for synthesis of biofuel and value-added compounds using metal-free photo-catalyst. Fuel. 2021;303:121154.
CrossRef Google scholar
[14]
Ma B, Wang Y, Guo X, et al. Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides. Appl Catal A. 2018;552:70-76.
CrossRef Google scholar
[15]
Dhingra S, Sharma M, Krishnan V, Nagaraja CM. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2,5-bis(hydroxymethyl)furan. J Colloid Interface Sci. 2022;615:346-356.
CrossRef Google scholar
[16]
Zhou H, Wang M, Wang F. Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200°C. Joule. 2021;5(11):3031-3044.
CrossRef Google scholar
[17]
Yue Y, Zhang Z, Binder AJ, et al. Hierarchically superstructured prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials. ChemSusChem. 2015;8(1):177-183.
CrossRef Google scholar
[18]
Meng X, Yang J, Zhang C, et al. Light-driven CO2 reduction over Prussian blue analogues as heterogeneous catalysts. ACS Catalysis. 2021;12(1):89-100.
CrossRef Google scholar
[19]
Simonov A, De Baerdemaeker T, Boström HLB, et al. Hidden diversity of vacancy networks in Prussian blue analogues. Nature. 2020;578(7794):256-260.
CrossRef Google scholar
[20]
Yang K, Zhang Y, Meng C, et al. Well-crystallized ZnCo2O4 nanosheets as a new-style support of Au catalyst for high efficient CO preferential oxidation in H2 stream under visible light irradiation. Appl Surf Sci. 2017;391(Part B):635-644.
CrossRef Google scholar
[21]
Guo H, Chen J, Weng W, Wang Q, Li S. Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem Eng J. 2014;239:192-199.
CrossRef Google scholar
[22]
Pan Y, Zeng W, Li L, et al. A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. Nanomicro Lett. 2017;9(2):20.
CrossRef Google scholar
[23]
Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):e1802510.
CrossRef Google scholar
[24]
Zhang W, Chen L, Dai S, et al. Reconstructed covalent organic frameworks. Nature. 2022;604(7904):72-79.
CrossRef Google scholar
[25]
Zhang M, Chen Y, Chang JN, et al. Efficient charge migration in chemically-bonded Prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution. JACS Au. 2021;1(2):212-220.
CrossRef Google scholar
[26]
Wen G, Ren B, Zheng Y, et al. Engineering electrochemical surface for efficient carbon dioxide upgrade. Adv. Energy Mater. 2021;12(3):12.
CrossRef Google scholar
[27]
Wu W, Zhang Z, Sun L, et al. Modulating microenvironment of active moiety in Prussian blue analogues via surface coordination to enhance CO2 photoreduction. Sep Purif Technol. 2023;311:123230.
CrossRef Google scholar
[28]
Zhang W, Xu C, Liu E, Fan J, Hu X. Facile strategy to construction Z-scheme ZnCo2O4/g-C3N4 photocatalyst with efficient H2 evolution activity. Appl Surf Sci. 2020;515:146039.
CrossRef Google scholar
[29]
Huang ZD, Gong Z, Kang Q, et al. High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Mater Chem Front. 2017;1(10):1975-1981.
CrossRef Google scholar
[30]
Yang ZM, Hou SC, Huang GF, Duan HG, Huang WQ. Electrospinning preparation of p-type NiO/n-type CeO2 heterojunctions with enhanced photocatalytic activity. Mater Lett. 2014;133:109-112.
CrossRef Google scholar
[31]
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci. 2022;628(Pt B):64-78.
CrossRef Google scholar
[32]
Wang P, Mao Y, Li L, et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew Chem Int Ed Engl. 2019;58(33):11329-11334.
CrossRef Google scholar
[33]
Li C, Wang H, Naghadeh SB, Zhang JZ, Fang P. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl Catal B. 2018;227:229-239.
CrossRef Google scholar
[34]
Su J, Jiang L, Xiao B, et al. Dipole-dipole tuned electronic reconfiguration of defective carbon sites for efficient oxygen reduction into H2O2. Small. 2023;e2310317.
CrossRef Google scholar
[35]
Wang L, Cheng B, Zhang L, Yu J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small. 2021;17(41):2103447.
CrossRef Google scholar
[36]
Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020;6(7):1543-1559.
[37]
He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B. 2020;272:119006.
CrossRef Google scholar
[38]
Cui B, Lin H, Zhao XC, Li JB, Li WD. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles. Acta Phys Chim Sin. 2011;27(10):2411-2415.
CrossRef Google scholar
[39]
Hankin A, Alexander JC, Kelsall GH. Constraints to the flat band potential of hematite photo-electrodes. Phys Chem Chem Phys. 2014;16(30):16176-16186.
CrossRef Google scholar
[40]
Franchina Vergel NA, Post LC, Sciacca D, et al. Engineering a robust flat band in III–V semiconductor heterostructures. Nano Lett. 2021;21(1):680-685.
CrossRef Google scholar
[41]
Yang L, Mi W, Wang X. Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J Alloys Compd. 2016;662:528-533.
CrossRef Google scholar
[42]
Ou M, Tu WG, Yin SM, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed Engl. 2018;57(41):13570-13574.
CrossRef Google scholar
[43]
Lin C, Chai C, Li Y, et al. CaCl2 molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study. Green Chem. 2021;23(5):2058-2068.
CrossRef Google scholar
[44]
In-noi O, Daorattanachai P, Rungnim C, et al. Insight into fructose dehydration over lewis acid α-Cu2P2O7 catalyst. Chem Nano Mat. 2021;7(3):292-298.
CrossRef Google scholar
[45]
Zhao H, Li CF, Yu X, et al. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl Catal B. 2022;302:302.
CrossRef Google scholar
[46]
Li R, Lin Q, Ren J, et al. Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid. Green Energy Environ. 2022;9(2):311-320.
CrossRef Google scholar
[47]
Yao L, Su C a, Qi L, Liu C. The substituent structures and characteristic infrared spectra of furan esters. Spectrosc Spectral Anal. 1998;19(1):32-34.
[48]
Liao Y, Guo Z, Cao Y, Ma X, Lin Y. Analysis of pyrolysis mechanism of 5-hydroxymethyl furfural by using PY-GC-MS and in-situ FT-IR. J South China Univ Technol Nat Sci. 2015;43:15-21.
[49]
Shi Y, Wang Y, Yu J, et al. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv Energy Mater. 2023;13(13):13.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/