Prussian blue analogs photocatalyst promote the evolution of value-added platform compounds via Co—CN—Zn covalent bonds
Junming Shi, Guoyang Gao, Can Jin, Hongqing Wu, Weizhen Wang, Yulong An, Zhen Zhou, Zhanhua Huang, Wenshuai Chen
Prussian blue analogs photocatalyst promote the evolution of value-added platform compounds via Co—CN—Zn covalent bonds
Value-added conversion of lignocellulose is a sustainable approach. Photo-refining biomass is in line with current environmental protection strategies. However, photo-reforming biomass suffers from poor catalyst stability and low conversion efficiency. Here, we designed fructose as a lignocellulosic model. The heterogeneous structure of Prussian blue coating was constructed with a special covalent bond structure of Co—CN—Zn. This structure has a catalytic conversion mechanism that can accelerate electron transfer. Fructose was simultaneously converted to value-added platform compounds (5-HMF and formic acid) and gaseous fuels (CO, CH4) with a conversion rate of up to 92.5%, which is more than 1.7 times than that of catalysts without adding Prussian blue. Hydrogen transfer and carbon transfer on the carbon atoms of fructose facilitates the production and accelerates the spillover of CO from formic acid. This work provides new ideas for the development of Prussian blue catalysts and the conversion of pentose.
biomass / covalent bond / heterojunctions / Prussian blue analog / value-added platform compounds
[1] |
Kothari R, Tyagi VV, Pathak A. Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev. 2010;14(9):3164-3170.
CrossRef
Google scholar
|
[2] |
Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14(3):919-937.
CrossRef
Google scholar
|
[3] |
Khansary MA, Aroon MA, Shirazian S. Physical adsorption of CO2 in biomass at atmospheric pressure and ambient temperature. Environ Chem Lett. 2020;18(4):1423-1431.
CrossRef
Google scholar
|
[4] |
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841-845.
CrossRef
Google scholar
|
[5] |
Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106(9):4044-4098.
CrossRef
Google scholar
|
[6] |
Woo J, Stein C, Christian AH, Levin MD. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature. 2023;623(7985):77-82.
CrossRef
Google scholar
|
[7] |
Parveen F, Upadhyayula S. Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - a mechanistic and experimental study. Fuel Process Technol. 2017;162:30-36.
CrossRef
Google scholar
|
[8] |
Wang YY, Xie TT, Zhang JY, Dang BK, Li YY. Green fabrication of an ionic liquid-activated lignocellulose flame-retardant composite. Ind Crops Prod. 2022;178:114602.
CrossRef
Google scholar
|
[9] |
Qiu G, Huang C, Sun X, Chen B. Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem. 2019;21(14):3930-3939.
CrossRef
Google scholar
|
[10] |
Zhao R, Dong WY, Yang C, et al. Formate as a supplementary substrate facilitates sugar metabolism and solvent production by Clostridium beijerinckii NCIMB 8052. Synth Syst Biotechnol. 2023;8(2):196-205.
CrossRef
Google scholar
|
[11] |
Tian J, Deng W, Zhang Z, et al. Discovery and remodeling of vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat Commun. 2023;14(1):7758.
CrossRef
Google scholar
|
[12] |
Cai B, Kang R, Guo D, Feng J, Ma T, Pan H. An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-hydroxymethylfurfural. Renew Energy. 2022;199:1629-1638.
CrossRef
Google scholar
|
[13] |
Raut SU, Bhagat PR. Sugarcane bio-refinery products: an efficient one umbrella approach for synthesis of biofuel and value-added compounds using metal-free photo-catalyst. Fuel. 2021;303:121154.
CrossRef
Google scholar
|
[14] |
Ma B, Wang Y, Guo X, et al. Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides. Appl Catal A. 2018;552:70-76.
CrossRef
Google scholar
|
[15] |
Dhingra S, Sharma M, Krishnan V, Nagaraja CM. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2,5-bis(hydroxymethyl)furan. J Colloid Interface Sci. 2022;615:346-356.
CrossRef
Google scholar
|
[16] |
Zhou H, Wang M, Wang F. Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200°C. Joule. 2021;5(11):3031-3044.
CrossRef
Google scholar
|
[17] |
Yue Y, Zhang Z, Binder AJ, et al. Hierarchically superstructured prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials. ChemSusChem. 2015;8(1):177-183.
CrossRef
Google scholar
|
[18] |
Meng X, Yang J, Zhang C, et al. Light-driven CO2 reduction over Prussian blue analogues as heterogeneous catalysts. ACS Catalysis. 2021;12(1):89-100.
CrossRef
Google scholar
|
[19] |
Simonov A, De Baerdemaeker T, Boström HLB, et al. Hidden diversity of vacancy networks in Prussian blue analogues. Nature. 2020;578(7794):256-260.
CrossRef
Google scholar
|
[20] |
Yang K, Zhang Y, Meng C, et al. Well-crystallized ZnCo2O4 nanosheets as a new-style support of Au catalyst for high efficient CO preferential oxidation in H2 stream under visible light irradiation. Appl Surf Sci. 2017;391(Part B):635-644.
CrossRef
Google scholar
|
[21] |
Guo H, Chen J, Weng W, Wang Q, Li S. Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem Eng J. 2014;239:192-199.
CrossRef
Google scholar
|
[22] |
Pan Y, Zeng W, Li L, et al. A facile synthesis of ZnCo2O4 nanocluster particles and the performance as anode materials for lithium ion batteries. Nanomicro Lett. 2017;9(2):20.
CrossRef
Google scholar
|
[23] |
Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):e1802510.
CrossRef
Google scholar
|
[24] |
Zhang W, Chen L, Dai S, et al. Reconstructed covalent organic frameworks. Nature. 2022;604(7904):72-79.
CrossRef
Google scholar
|
[25] |
Zhang M, Chen Y, Chang JN, et al. Efficient charge migration in chemically-bonded Prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution. JACS Au. 2021;1(2):212-220.
CrossRef
Google scholar
|
[26] |
Wen G, Ren B, Zheng Y, et al. Engineering electrochemical surface for efficient carbon dioxide upgrade. Adv. Energy Mater. 2021;12(3):12.
CrossRef
Google scholar
|
[27] |
Wu W, Zhang Z, Sun L, et al. Modulating microenvironment of active moiety in Prussian blue analogues via surface coordination to enhance CO2 photoreduction. Sep Purif Technol. 2023;311:123230.
CrossRef
Google scholar
|
[28] |
Zhang W, Xu C, Liu E, Fan J, Hu X. Facile strategy to construction Z-scheme ZnCo2O4/g-C3N4 photocatalyst with efficient H2 evolution activity. Appl Surf Sci. 2020;515:146039.
CrossRef
Google scholar
|
[29] |
Huang ZD, Gong Z, Kang Q, et al. High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Mater Chem Front. 2017;1(10):1975-1981.
CrossRef
Google scholar
|
[30] |
Yang ZM, Hou SC, Huang GF, Duan HG, Huang WQ. Electrospinning preparation of p-type NiO/n-type CeO2 heterojunctions with enhanced photocatalytic activity. Mater Lett. 2014;133:109-112.
CrossRef
Google scholar
|
[31] |
Wang K, Xie H, Li Y, Wang G, Jin Z. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. J Colloid Interface Sci. 2022;628(Pt B):64-78.
CrossRef
Google scholar
|
[32] |
Wang P, Mao Y, Li L, et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew Chem Int Ed Engl. 2019;58(33):11329-11334.
CrossRef
Google scholar
|
[33] |
Li C, Wang H, Naghadeh SB, Zhang JZ, Fang P. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl Catal B. 2018;227:229-239.
CrossRef
Google scholar
|
[34] |
Su J, Jiang L, Xiao B, et al. Dipole-dipole tuned electronic reconfiguration of defective carbon sites for efficient oxygen reduction into H2O2. Small. 2023;e2310317.
CrossRef
Google scholar
|
[35] |
Wang L, Cheng B, Zhang L, Yu J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small. 2021;17(41):2103447.
CrossRef
Google scholar
|
[36] |
Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020;6(7):1543-1559.
|
[37] |
He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B. 2020;272:119006.
CrossRef
Google scholar
|
[38] |
Cui B, Lin H, Zhao XC, Li JB, Li WD. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles. Acta Phys Chim Sin. 2011;27(10):2411-2415.
CrossRef
Google scholar
|
[39] |
Hankin A, Alexander JC, Kelsall GH. Constraints to the flat band potential of hematite photo-electrodes. Phys Chem Chem Phys. 2014;16(30):16176-16186.
CrossRef
Google scholar
|
[40] |
Franchina Vergel NA, Post LC, Sciacca D, et al. Engineering a robust flat band in III–V semiconductor heterostructures. Nano Lett. 2021;21(1):680-685.
CrossRef
Google scholar
|
[41] |
Yang L, Mi W, Wang X. Tailoring magnetism of black phosphorene doped with B, C, N, O, F, S and Se atom: a DFT calculation. J Alloys Compd. 2016;662:528-533.
CrossRef
Google scholar
|
[42] |
Ou M, Tu WG, Yin SM, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed Engl. 2018;57(41):13570-13574.
CrossRef
Google scholar
|
[43] |
Lin C, Chai C, Li Y, et al. CaCl2 molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study. Green Chem. 2021;23(5):2058-2068.
CrossRef
Google scholar
|
[44] |
In-noi O, Daorattanachai P, Rungnim C, et al. Insight into fructose dehydration over lewis acid α-Cu2P2O7 catalyst. Chem Nano Mat. 2021;7(3):292-298.
CrossRef
Google scholar
|
[45] |
Zhao H, Li CF, Yu X, et al. Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Appl Catal B. 2022;302:302.
CrossRef
Google scholar
|
[46] |
Li R, Lin Q, Ren J, et al. Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid. Green Energy Environ. 2022;9(2):311-320.
CrossRef
Google scholar
|
[47] |
Yao L, Su C a, Qi L, Liu C. The substituent structures and characteristic infrared spectra of furan esters. Spectrosc Spectral Anal. 1998;19(1):32-34.
|
[48] |
Liao Y, Guo Z, Cao Y, Ma X, Lin Y. Analysis of pyrolysis mechanism of 5-hydroxymethyl furfural by using PY-GC-MS and in-situ FT-IR. J South China Univ Technol Nat Sci. 2015;43:15-21.
|
[49] |
Shi Y, Wang Y, Yu J, et al. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv Energy Mater. 2023;13(13):13.
CrossRef
Google scholar
|
/
〈 | 〉 |