Semi-transparent metal electrode-free all-inorganic perovskite solar cells using floating-catalyst-synthesized carbon nanotubes

Saemon Yoon, Il Hyun Lee, Jiye Han, Jitendra Bahadur, Seojun Lee, Sangsu Lee, Dong Suk Kim, B. Mikladal, Esko I. Kauppinen, Dong-Won Kang, Il Jeon

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12440. DOI: 10.1002/eom2.12440
RESEARCH ARTICLE

Semi-transparent metal electrode-free all-inorganic perovskite solar cells using floating-catalyst-synthesized carbon nanotubes

Author information +
History +

Abstract

Perovskite solar cells offer a promising future for next-generation photovoltaics owing to numerous advantages such as high efficiency and ease of processing. However, two significant challenges, air stability, and manufacturing costs, hamper their commercialization. This study proposes a solution to these issues by introducing a floating catalyst-based carbon nanotube (CNT) electrode into all-inorganic perovskite solar cells for the first time. The use of CNT eliminates the need for metal electrodes, which are primarily responsible for high fabrication costs and device instability. The nanohybrid film formed by combining hydrophobic CNT with polymeric hole-transporting materials acted as an efficient charge collector and provided moisture protection. Remarkably, the metal-electrode-free CNT-based all-inorganic perovskite solar cells demonstrated outstanding stability, maintaining their efficiency for over 4000 h without encapsulation in air. These cells achieved a retention efficiency of 13.8%, which is notable for all-inorganic perovskites, and they also exhibit high transparency in both the visible and infrared regions. The obtained efficiency was the highest for semi-transparent all-inorganic perovskite solar cells. Building on this, a four-terminal tandem device using a low-band perovskite solar cell achieved a power conversion efficiency of 21.1%. These CNT electrodes set new benchmarks for the potential of perovskite solar cells with groundbreaking device stability and tandem applicability, demonstrating a step toward industrial applications.

Keywords

carbon electrode / carbon nanotube / floating catalyst / inorganic perovskite solar cell / metal-free electrode

Cite this article

Download citation ▾
Saemon Yoon, Il Hyun Lee, Jiye Han, Jitendra Bahadur, Seojun Lee, Sangsu Lee, Dong Suk Kim, B. Mikladal, Esko I. Kauppinen, Dong-Won Kang, Il Jeon. Semi-transparent metal electrode-free all-inorganic perovskite solar cells using floating-catalyst-synthesized carbon nanotubes. EcoMat, 2024, 6(3): e12440 https://doi.org/10.1002/eom2.12440

References

[1]
Schoonman J. Organic–inorganic lead halide perovskite solar cell materials: a possible stability problem. Chem Phys Lett. 2015;619(5):193-195.
CrossRef Google scholar
[2]
Lin C. Stabilizing organic–inorganic lead halide perovskite solar cells with efficiency beyond 20%. Front Chem. 2020;8:592.
CrossRef Google scholar
[3]
Mitzi DB, Yuan M, Liu W, et al. A high-efficiency solution-deposited thin-film photovoltaic device. Adv Mater. 2008;20(19):3657-3662.
CrossRef Google scholar
[4]
Gao L, Zhang ZG, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater. 2016;28(9):1884-1890.
CrossRef Google scholar
[5]
Chen Y-H, Lin L-Y, Lu C-W, et al. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. J Am Chem Soc. 2012;134(33):13616-13623.
CrossRef Google scholar
[6]
Song Z, McElvany CL, Phillips AB, et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energ Environ Sci. 2017;10(6):1297-1305.
CrossRef Google scholar
[7]
Dutta NS, Noel NK, Arnold CB. Crystalline nature of colloids in methylammonium lead halide perovskite precursor inks revealed by cryo-electron microscopy. J Phys Chem Lett. 2020;11(15):5980-5986.
CrossRef Google scholar
[8]
Xu X, Wang W, Zhou W, Shao Z. Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods. 2018;2(7):1800071.
CrossRef Google scholar
[9]
Correa-Baena J-P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science. 2017;358(6364):739-744.
CrossRef Google scholar
[10]
Chang NL, Yi Ho-Baillie AW, Basore PA, Young TL, Evans R, Egan RJ. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog Photovolt Res Appl. 2017;25(5):390-405.
CrossRef Google scholar
[11]
Berhe TA, Su W-N, Chen C-H, et al. Organometal halide perovskite solar cells: degradation and stability. Energ Environ Sci. 2016;9(2):323-356.
CrossRef Google scholar
[12]
Jain P, Ramachandran V, Clark RJ, et al. Multiferroic behavior associated with an order−disorder hydrogen bonding transition in metal−organic frameworks (MOFs) with the perovskite ABX3 architecture. J Am Chem Soc. 2009;131(38):13625-13627.
CrossRef Google scholar
[13]
Gladkikh V, Kim DY, Hajibabaei A, Jana A, Myung CW, Kim KS. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties. J Phys Chem C. 2020;124(16):8905-8918.
CrossRef Google scholar
[14]
Lyu M, Yun J-H, Cai M, et al. Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016;9(3):692-702.
CrossRef Google scholar
[15]
Brennan MC, Draguta S, Kamat PV, Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2017;3(1):204-213.
CrossRef Google scholar
[16]
Kim M, Motti SG, Sorrentino R, Petrozza A. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energ Environ Sci. 2018;11(9):2609-2619.
CrossRef Google scholar
[17]
Kwon H, Lim JW, Han J, et al. Towards efficient and stable perovskite solar cells employing non-hygroscopic F4-TCNQ doped TFB as the hole-transporting material. Nanoscale. 2019;11(41):19586-19594.
CrossRef Google scholar
[18]
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J Phys Chem Lett. 2015;6(13):2452-2456.
CrossRef Google scholar
[19]
Li C, Tscheuschner S, Paulus F, et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv Mater. 2016;28(12):2446-2454.
CrossRef Google scholar
[20]
Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G. How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energ Environ Sci. 2019;12(1):396-409.
CrossRef Google scholar
[21]
Warren WL, Vanheusden K, Dimos D, Pike GE, Tuttle BA. Oxygen vacancy motion in perovskite oxides. J Am Ceram Soc. 1996;79(2):536-538.
CrossRef Google scholar
[22]
Kawai H, Kuwano J. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67 − x Li3x TiO3. J Electrochem Soc. 1994;141(7):L78-L79.
CrossRef Google scholar
[23]
Giuliano G, Cataldo S, Scopelliti M, et al. Nonprecious copper-based transparent top electrode via seed layer–assisted thermal evaporation for high-performance semitransparent n-i-p perovskite solar cells. Adv Mater Technol. 2019;4(5):1800688.
CrossRef Google scholar
[24]
Li Z, Klein TR, Kim DH, et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater. 2018;3(4):1-20.
CrossRef Google scholar
[25]
Zhou Y, Yin Y, Zuo X, et al. Enhancing chemical stability and suppressing ion migration in CH3NH3PbI3 perovskite solar cells via direct backbone attachment of polyesters on grain boundaries. Chem Mater. 2020;32(12):5104-5117.
CrossRef Google scholar
[26]
Wei D, Wang T, Ji J, et al. Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. J Mater Chem A. 2016;4(5):1991-1998.
CrossRef Google scholar
[27]
Ju M-G, Chen M, Zhou Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule. 2018;2(7):1231-1241.
CrossRef Google scholar
[28]
Giuliano G, Bonasera A, Arrabito G, Pignataro B. Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges. Solar RRL. 2021;5(12):2100702.
CrossRef Google scholar
[29]
Wang Y, Dar MI, Ono LK, et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science. 2019;365(6453):591-595.
CrossRef Google scholar
[30]
Lau CFJ, Wang Z, Sakai N, et al. Fabrication of efficient and stable CsPbI3 perovskite solar cells through cation exchange process. Adv Energy Mater. 2019;9(36):1901685.
CrossRef Google scholar
[31]
Liu C, Yang Y, Xia X, et al. Soft template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells. Adv Energy Mater. 2020;10(9):1903751.
CrossRef Google scholar
[32]
Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater. 2018;30(21):1800855.
CrossRef Google scholar
[33]
Han Q, Yang S, Wang L, et al. The sulfur-rich small molecule boosts the efficiency of carbon-based CsPbI2Br perovskite solar cells to approaching 14%. Solar Energy. 2021;216(1):351-357.
CrossRef Google scholar
[34]
Bahadur J, Ryu J, Lee D-G, et al. In-situ surface defects passivation with small carbon chain molecules for highly efficient, air-processed inorganic CsPbI2Br perovskite photovoltaics. Appl Surf Sci. 2023;614:156229.
CrossRef Google scholar
[35]
Yu L, Guo T, Yuan H, et al. Effective lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells. Chem Eng J. 2021;420:129931.
CrossRef Google scholar
[36]
Bahadur J, Cho S, Pandey P, et al. Surface defect passivation of all-inorganic CsPbI2Br perovskites via fluorinated ionic liquid for efficient outdoor/indoor photovoltaics processed in ambient air. Appl Surf Sci. 2023;637:157901.
CrossRef Google scholar
[37]
Bahadur J, Ryu J, Pandey P, Cho S, Cho JS, Kang D-W. In situcrystal reconstruction strategy-based highly efficient air-processed inorganic CsPbI2Br perovskite photovoltaics for indoor, outdoor, and switching applications. Nanoscale. 2023;15(8):3850-3863.
CrossRef Google scholar
[38]
Zhang J, Wang Z, Mishra A, et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule. 2020;4(1):222-234.
CrossRef Google scholar
[39]
Xiao H, Zuo C, Yan K, et al. Highly efficient and air-stable inorganic perovskite solar cells enabled by polyactic acid modification. Adv Energy Mater. 2023;13(32):2300738.
CrossRef Google scholar
[40]
Dong C, Han X, Zhao Y, Li J, Chang L, Zhao W. A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell. Solar RRL. 2018;2(9):1800139.
CrossRef Google scholar
[41]
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule. 2019;3(1):191-204.
CrossRef Google scholar
[42]
Dong C, Han X, Li W, Qiu Q, Wang J. Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell. Nano Energy. 2019;59:553-559.
CrossRef Google scholar
[43]
Duan C, Cui J, Zhang M, et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater. 2020;10(22):2000691.
CrossRef Google scholar
[44]
Si H, Liao Q, Zhang Z, et al. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy. 2016;22:223-231.
CrossRef Google scholar
[45]
Hou F, Su Z, Jin F, et al. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale. 2015;7(21):9427-9432.
CrossRef Google scholar
[46]
Zou M, Xia X, Jiang Y, et al. Strengthened perovskite/fullerene interface enhances efficiency and stability of inverted planar perovskite solar cells via a tetrafluoroterephthalic acid interlayer. ACS Appl Mater Interfaces. 2019;11(36):33515-33524.
CrossRef Google scholar
[47]
Li Z, Liu C, Zhang X, Ren G, Han W, Guo W. Developing 1D Sb-embedded carbon nanorods to improve efficiency and stability of inverted planar perovskite solar cells. Small. 2019;15(1):1804692.
CrossRef Google scholar
[48]
Bai Y, Dong Q, Shao Y, et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun. 2016;7(1):12806.
CrossRef Google scholar
[49]
Zhang X, Gao N, Li Y, et al. A solution-processed dopant-free tin phthalocyanine (SnPc) hole transport layer for efficient and stable carbon-based CsPbI2Br planar perovskite solar cells prepared by a low-temperature process. ACS Appl Energy Mater. 2020;3(8):7832-7843.
CrossRef Google scholar
[50]
Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater. 2020;10(13):1902579.
CrossRef Google scholar
[51]
Ullah S, Wang J, Yang P, et al. All-inorganic CsPbI2Br perovskite solar cells: recent developments and challenges. Energ Technol. 2021;9(12):2100691.
CrossRef Google scholar
[52]
Gao F, Zhao Y, Zhang X, You J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater. 2020;10(13):1902650.
CrossRef Google scholar
[53]
Zhang Y, Ng S-W, Lu X, Zheng Z. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem Rev. 2020;120(4):2049-2122.
CrossRef Google scholar
[54]
Wieland L, Li H, Rust C, Chen J, Flavel BS. Carbon nanotubes for photovoltaics: from lab to industry. Adv Energy Mater. 2021;11(3):2002880.
CrossRef Google scholar
[55]
He R, Huang X, Chee M, Hao F, Dong P. Carbon-based perovskite solar cells: from single-junction to modules. Carbon Energy. 2019;1(1):109-123.
CrossRef Google scholar
[56]
Zhang Q, Nam JS, Han J, et al. Large-diameter carbon nanotube transparent conductor overcoming performance–yield tradeoff. Adv Funct Mater. 2022;32(11):2103397.
CrossRef Google scholar
[57]
Yoon J, Kim U, Yoo Y, et al. Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv Sci. 2021;8(7):2004092.
CrossRef Google scholar
[58]
Nasibulin AG, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano. 2011;5(4):3214-3221.
CrossRef Google scholar
[59]
Jeon I, Cui K, Chiba T, et al. Direct and dry deposited single-walled carbon nanotube films doped with MoOxas electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc. 2015;137(25):7982-7985.
CrossRef Google scholar
[60]
Jeon I, Chiba T, Delacou C, et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 2015;15(10):6665-6671.
CrossRef Google scholar
[61]
Mei A, Li X, Liu L, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295-298.
CrossRef Google scholar
[62]
Zhang G, Zhang J, Pan Z, Rao H, Zhong X. Enhancing hole extraction via carbon nanotubes/poly(3-hexylthiophene) composite for carbon-based CsPbI2Br solar cells with a new record efficiency. Sci China Mater. 2023;66:1727-1735.
CrossRef Google scholar
[63]
Chu Q-Q, Ding B, Peng J, et al. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol. 2019;35(6):987-993.
CrossRef Google scholar
[64]
Jeon I, Xiang R, Shawky A, Matsuo Y, Maruyama S. Single-walled carbon nanotubes in emerging solar cells: synthesis and electrode applications. Adv Energy Mater. 2019;9(23):1801312.
CrossRef Google scholar
[65]
Seo S, Akino K, Nam JS, et al. Multi-functional MoO3 doping of carbon-nanotube top electrodes for highly transparent and efficient semi-transparent perovskite solar cells. Adv Mater Interfaces. 2022;9(11):2101595.
CrossRef Google scholar
[66]
Li Z, Kulkarni SA, Boix PP, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano. 2014;8(7):6797-6804.
CrossRef Google scholar
[67]
Lee J-W, Jeon I, Lin H-S, et al. Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells. Nano Lett. 2018;19(4):2223-2230.
CrossRef Google scholar
[68]
Jeon I, Shawky A, Seo S, et al. Carbon nanotubes to outperform metal electrodes in perovskite solar cellsviadopant engineering and hole-selectivity enhancement. J Mater Chem A. 2020;8(22):11141-11147.
CrossRef Google scholar
[69]
Jeon I, Shawky A, Lin H-S, et al. Controlled redox of lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells. J Am Chem Soc. 2019;141(42):16553-16558.
CrossRef Google scholar
[70]
Aitola K, Sveinbjörnsson K, Correa-Baena J-P, et al. Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energ Environ Sci. 2016;9(2):461-466.
CrossRef Google scholar
[71]
Aitola K, Domanski K, Correa-Baena JP, et al. High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv Mater. 2017;29(17):1606398.
CrossRef Google scholar
[72]
Wang Z, Zhu X, Zuo S, et al. 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv Funct Mater. 2020;30(4):1908298.
CrossRef Google scholar
[73]
Lamanna E, Matteocci F, Calabrò E, et al. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule. 2020;4(4):865-881.
CrossRef Google scholar
[74]
Kim JY, Lee K, Coates NE, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science. 2007;317(5835):222-225.
CrossRef Google scholar
[75]
Choi JM, Han J, Yoon J, Kim S, Jeon I, Maruyama S. Overview and outlook on graphene and carbon nanotubes in perovskite photovoltaics from single-junction to tandem applications. Adv Funct Mater. 2022;32(42):2204594.
CrossRef Google scholar
[76]
Chen B, Bai Y, Yu Z, et al. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv Energy Mater. 2016;6(19):1601128.
CrossRef Google scholar
[77]
Ameri T, Li N, Brabec CJ. Highly efficient organic tandem solar cells: a follow up review. Energ Environ Sci. 2013;6(8):2390-2413.
CrossRef Google scholar
[78]
Ahn N, Jeon I, Yoon J, et al. Carbon-sandwiched perovskite solar cell. J Mater Chem A. 2018;6(4):1382-1389.
CrossRef Google scholar
[79]
Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energ Environ Sci. 2019;12(12):3437-3472.
CrossRef Google scholar
[80]
Musumeci AW, Silva GG, Liu J-W, Martens WN, Waclawik ER. Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer. 2007;48(6):1667-1678.
CrossRef Google scholar
[81]
Lee C, Lee S-W, Bae S, et al. Carbon nanotube electrode-based perovskite–silicon tandem solar cells. Solar RRL. 2020;4(12):2000353.
CrossRef Google scholar
[82]
Kim K, Lee S, Nam JS, et al. Highly transparent and mechanically robust energy-harvestable piezocomposite with embedded 1D P(VDF-TrFE) nanofibers and single-walled carbon nanotubes. Adv Funct Mater. 2023;33(14):2213374.
CrossRef Google scholar
[83]
Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cellsviasolvent engineering with enhanced mass transport. J Mater Chem A. 2018;6(46):23602-23609.
CrossRef Google scholar
[84]
Wang J, Chen L, Qian Z, Ren G, Wu J, Zhang H. Optimal intermediate adducts regulate low-temperature CsPbI2Br crystallization for efficient inverted all-inorganic perovskite solar cells. J Mater Chem A. 2020;8(47):25336-25344.
CrossRef Google scholar
[85]
Kim K, Han J, Lee S, et al. Liquid-state dithiocarbonate-based polymeric additives with monodispersity rendering perovskite solar cells with exceptionally high certified photocurrent and fill factor. Adv Energy Mater. 2023;13(14):2203742.
CrossRef Google scholar
[86]
Zarazua I, Bisquert J, Garcia-Belmonte G. Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells. J Phys Chem Lett. 2016;7(3):525-528.
CrossRef Google scholar
[87]
Parida B, Yoon S, Ryu J, Hayase S, Jeong SM, Kang D-W. Boosting the conversion efficiency over 20% in MAPbI3 perovskite planar solar cells by employing a solution-processed aluminum-doped nickel oxide hole collector. ACS Appl Mater Interfaces. 2020;12(20):22958-22970.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/