Efficient near-infrared emission in lanthanum ion doped double perovskite Cs2NaScCl6 via Cr3+ sensitization under visible light excitation
Weiguo Huang , Hui Peng , Jinling Huang , Ye Yang , Qilin Wei , Bao Ke , Muhammad Sheraz Khan , Jialong Zhao , Bingsuo Zou
EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12437
Efficient near-infrared emission in lanthanum ion doped double perovskite Cs2NaScCl6 via Cr3+ sensitization under visible light excitation
Herein, we synthesized Cr3+/Ln3+ (Er3+, Tm3+)-codoped rare earth-based Cs2NaScCl6 double perovskite, and the near-infrared emission of Ln3+ can be excited by visible light through the energy transfer (ET) from Cr3+ to Ln3+. Moreover, there are two independent emission bands, which stems from 4T2 → 4A2 transition of Cr3+ (970 nm) and f-f transition of Ln3+ (1542 nm for Er3+ and 1220 nm for Tm3+), respectively. Particularly, both compounds have ultra-high photoluminescence quantum yield (PLQY) of 60% for 10%Cr3+/6%Er3+-codoped Cs2NaScCl6 (Er3+ emission: ~26%) and 68% for 10%Cr3+/4.5%Tm3+-codoped Cs2NaScCl6 (Tm3+ emission: ~56%), which can be attributed to the ultra-high ET efficiency from Cr3+ to Ln3+ and the similar ionic activity of Sc3+ and Ln3+ allowing more dopants enter the host lattice. Considering the excellent stability of the samples, we demonstrated Cr3+/Tm3+-codoped Cs2NaScCl6 in the applications of near-infrared imaging and night vision. Finally, we reported 10%Cr3+/4.5%Tm3+/9%Er3+-tridoped Cs2NaScCl6 and further applied it for optical thermometry.
Cr 3+ sensitization / energy transfer / green light excitation / lead-free double perovskite / near-infrared emission
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |