Morphological modulation enabled by non-halogenated solvent-processed simple solid additives for high-efficiency organic solar cells

Muhammad Haris , Du Hyeon Ryu , Zakir Ullah , Bong Joo Kang , Nam Joong Jeon , Seungjin Lee , Hang Ken Lee , Sang Kyu Lee , Jong-Cheol Lee , Hyung-Wook Kwon , Won Suk Shin , Chang Eun Song

EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12436

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12436 DOI: 10.1002/eom2.12436
RESEARCH ARTICLE

Morphological modulation enabled by non-halogenated solvent-processed simple solid additives for high-efficiency organic solar cells

Author information +
History +
PDF

Abstract

The simple-structural and volatile solid additive 1,4-dibromobenzene (DBrB) can outperform organic solar cells (OSCs) fabricated with 1,4-diiodobenzene and 1,4-dichlorobenzene in terms of power conversion efficiency (PCE). A remarkable PCE of 17.0% has been achieved in a binary OSC based on DBrB-optimized photoactive materials processed from non-halogenated solvents, which is mainly attributed to the formation of a three-dimensional interpenetrating network and the orderly arrangement of the photoactive materials by improving the intermolecular interaction. This optimized morphology enables efficient charge transfer/transport as well as suppressed charge recombination, resulting in the simultaneous increase in all photovoltaic parameters. More importantly, we demonstrate that non-halogenated solvent-processed DBrB enabled PM6:Y6-HU OSCs with an impressive PCE of 18.6%, which is the highest efficiency yet reported for binary OSCs. This study suggests that the novel DBrB volatile solid additive is an effective approach to optimizing the morphology and thereby improves the photovoltaic performance of OSCs.

Keywords

dibromobenzene / morphology optimization / non-halogenated solvent / organic solar cells / solid additives

Cite this article

Download citation ▾
Muhammad Haris, Du Hyeon Ryu, Zakir Ullah, Bong Joo Kang, Nam Joong Jeon, Seungjin Lee, Hang Ken Lee, Sang Kyu Lee, Jong-Cheol Lee, Hyung-Wook Kwon, Won Suk Shin, Chang Eun Song. Morphological modulation enabled by non-halogenated solvent-processed simple solid additives for high-efficiency organic solar cells. EcoMat, 2024, 6(3): e12436 DOI:10.1002/eom2.12436

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Xu G, Cui C, Li Y. Flexible and semitransparent organic solar cells. Adv Energy Mater. 2018;8(7):1701791.

[2]

Krebs FC, Espinosa N, Hösel M, Søndergaard R, Jorgensen M. 25th anniversary article: rise to power–OPV-based solar parks. Adv Mater. 2014;26(1):29-39.

[3]

Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photon. 2012;6(3):153-161.

[4]

Servaites JD, Ratner MA, Marks TJ. Organic solar cells: a new look at traditional models. Energ Environ Sci. 2011;4(11):4410-4422.

[5]

Facchetti A. Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today. 2013;16(4):123-132.

[6]

Wei1 Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. A-DA′ DA non-fullerene acceptors for high-performance organic solar cells. Sci Chin Chem. 2020;63(10):1352-1366.

[7]

Cui C, Li Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energ Environ Sci. 2019;11(11):3225-3246.

[8]

Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res. 2012;45(5):723-733.

[9]

Yan C, Barlow S, Wang Z, et al. Non-fullerene acceptors for organic solar cells. Nat Rev Mater. 2018;3(3):1-19.

[10]

Lee C, Lee S, Kim GU, Lee W, Kim BJ. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem Rev. 2019;119(3):8028-8086.

[11]

Cai Y, Huo L, Sun Y. Recent advances in wide-bandgap photovoltaic polymers. Adv Mater. 2017;29(22):1605437.

[12]

Yao H, Wang J, Xu Y, Zhang S, Hou J. Recent progress in chlorinated organic photovoltaic materials. Acc Chem Res. 2020;53(4):822-832.

[13]

Chen Y, Wan X, Long G. High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res. 2013;46(11):2645-2655.

[14]

Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270(5243):1789-1791.

[15]

Heeger AJ. 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater. 2014;26(1):10-28.

[16]

Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc. 2017;139(21):7148-7151.

[17]

Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3(4):1140-1151.

[18]

Zhu L, Zhang M, Zhong W, et al. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energ Environ Sci. 2021;14(8):4341-4357.

[19]

Cheng P, Li G, Zhan X, Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photon. 2018;12(3):131-142.

[20]

Ma R, Liu T, Luo Z, et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci Chin Chem. 2020;63(3):325-330.

[21]

Liu B, Sun H, Lee JW, et al. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energ Environ Sci. 2021;14(8):4499-4507.

[22]

Cui C, Li Y. Morphology optimization of photoactive layers in organic solar cells. Aggregate. 2021;2(2):e31.

[23]

Staniec PA, Parnell AJ, Dunbar ADF, et al. The nanoscale morphology of a PCDTBT: PCBM photovoltaic blend. Adv Mater. 2011;1(4):499-504.

[24]

Yang L, Zhang S, He C, et al. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J Am Chem Soc. 2017;139(5):1958-1966.

[25]

Li M, Liu F, Wan X, et al. Subtle balance between length scale of phase separation and domain purification in small-molecule bulk-heterojunction blends under solvent vapor treatment. Adv Mater. 2015;27(40):6296-6302.

[26]

Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater. 2005;4(11):864-868.

[27]

Erb BT, Zhokhavets U, Gobsch G, et al. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater. 2005;15(7):1193-1196.

[28]

Zhu W, Spencer AP, Mukherjee S, et al. Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells. J Am Chem Soc. 2020;142(34):14532-14547.

[29]

Guo X, Zhou N, Lou SJ, et al. Polymer solar cells with enhanced fill factors. Nat Photon. 2013;7(10):825-833.

[30]

He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon. 2012;6(9):591-595.

[31]

Jia T, Zhang J, Zhong W, et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy. 2020;72:104718.

[32]

McDowell C, Abdelsamie M, Toney MF, Bazan GC. Solvent additives: key morphology-directing agents for solution-processed organic solar cells. Adv Mater. 2018;30(33):1707114.

[33]

Fan H, Yang H, Wu Y, et al. Anthracene-assisted morphology optimization in photoactive layer for high-efficiency polymer solar cells. Adv Funct Mater. 2021;31(37):2103944.

[34]

Qin J, Yang Q, Oh J, et al. Volatile solid additive-assisted sequential deposition enables 18.42% efficiency in organic solar cells. Adv Sci. 2022;9(9):2105347.

[35]

Fu J, Chen H, Huang P, et al. Eutectic phase behavior induced by a simple additive contributes to efficient organic solar cells. Nano Energy. 2021;84:105862.

[36]

Bao S, Yang H, Fan H, et al. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv Mater. 2021;33(48):2105301.

[37]

Li C, Gu X, Chen Z, et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J Am Chem Soc. 2022;144(32):14731-14739.

[38]

Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett. 2004;93(21):216601.

[39]

Chen Y, Qin Y, Wu Y, et al. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Adv Energy Mater. 2017;7(17):1700328.

[40]

Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett. 2005;86(12):123509.

[41]

Abbas Z, Ryu SU, Haris M, et al. Optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells. Nano Energy. 2022;101:107574.

[42]

Oh J, Jung S, Kang SH, et al. Highly efficient layer-by-layer large-scale manufacturing of polymer solar cells with minimized device-to-device variations by employing benzothiadiazole-based solid additives. J Mater Chem A. 2022;10(38):20606-20615.

[43]

Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13(8):1741-1747.

[44]

Liao X, Li Q, Ye J, et al. Huang solid-liquid convertible fluorinated terthiophene as additives in mediating morphology and performance of organic solar cells. Chem Eng J. 2023;453:139489.

[45]

Cai G, Chen Z, Xia X, et al. Pushing the efficiency of high open-circuit voltage binary organic solar cells by vertical morphology tuning. Adv Sci. 2022;9(14):2200578.

[46]

Song X, Zhang K, Guo R, et al. Process-aid solid engineering triggers delicately modulation of Y-series non-fullerene acceptor for efficient organic solar cells. Adv Mater. 2022;34(20):2200907.

RIGHTS & PERMISSIONS

2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/