A flexible transparent graphene/metal–organic framework complex hybrid chemical sensor for highly sensitive ethanol detection
Yong Hee Kim, Chang Ho Choi, Hyun Woo Song, Eun Kwang Lee, Dong-Pyo Kim, Joon Hak Oh
A flexible transparent graphene/metal–organic framework complex hybrid chemical sensor for highly sensitive ethanol detection
High-performance flexible and transparent chemical sensors are key to achieving wearable electronics. Graphene with high transmittance and electrical properties is a suitable material for flexible and transparent chemical sensors. However, graphene has low detectivity to chemical substances. Here, we report hybrid chemical sensors fabricated by introducing a highly flat and smooth metal–organic framework (MOF) on graphene. The graphene chemical sensors functionalized with MOF on SiO2/Si wafer exhibit 22 times higher sensitivity of 6.07 μA ppm−1 in detecting ethanol than that of pristine graphene transistors of 0.28 μA ppm−1 and a low detection limit of 1 ppm. Furthermore, a flexible transparent 7 × 7 chemical sensor array exhibits great driving stability after the bending cycles of 105 at a bending radius of 1.0 mm and shows sensitivity of 0.11 μA ppm−1. Our findings demonstrate an efficient way to improve the chemical sensing ability of graphene for application in wearable chemical sensors.
chemical sensor / flexible electronics / graphene / layer-by-layer process / metal–organic framework
[1] |
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669.
CrossRef
Google scholar
|
[2] |
Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530-1534.
CrossRef
Google scholar
|
[3] |
Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197-200.
CrossRef
Google scholar
|
[4] |
Schwierz F. Graphene transistors. Nat Nanotechnol. 2010;5(7):487-496.
CrossRef
Google scholar
|
[5] |
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A review on the applications of graphene in mechanical transduction. Adv Mater. 2022;34(8):2101326.
CrossRef
Google scholar
|
[6] |
Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008;3(4):206-209.
CrossRef
Google scholar
|
[7] |
Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics. 2010;4(9):611-622.
CrossRef
Google scholar
|
[8] |
Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6(5):3677-3694.
CrossRef
Google scholar
|
[9] |
Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192-200.
CrossRef
Google scholar
|
[10] |
Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320(5881):1308.
CrossRef
Google scholar
|
[11] |
Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385-388.
CrossRef
Google scholar
|
[12] |
Zhang P, Ma L, Fan F, et al. Fracture toughness of graphene. Nat Commun. 2014;5(1):3782.
CrossRef
Google scholar
|
[13] |
Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706-710.
CrossRef
Google scholar
|
[14] |
Martins LGP, Song Y, Zeng T, Dresselhaus MS, Kong J, Araujo PT. Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci. 2013;110(44):17762-17767.
CrossRef
Google scholar
|
[15] |
Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424-428.
CrossRef
Google scholar
|
[16] |
Lee EK, Kim Y, Back J, Lee E, Oh JH. Reduced pyronin B as a solution-processable and heating-free n-type dopant for soft electronics. J Mater Chem C. 2018;6(25):6672-6679.
CrossRef
Google scholar
|
[17] |
Lee S, Choi H, Moon I, et al. Contact resistivity in edge-contacted graphene field effect transistors. Adv Electron Mater. 2022;8(5):2101169.
CrossRef
Google scholar
|
[18] |
He S-M, Lin H-Y, Shen C-J, Su C-Y. Wrinkle-free graphene films on fluorinated self-assembled monolayer-modified substrates for enhancing the electrical performance of transistors. ACS Appl Nano Mater. 2022;5(4):5793-5802.
CrossRef
Google scholar
|
[19] |
Yu G, Hu L, Liu N, et al. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011;11(10):4438-4442.
CrossRef
Google scholar
|
[20] |
Sui D, Chang M, Peng Z, et al. Graphene-based cathode materials for lithium-ion capacitors: a review. Nanomaterials. 2021;11(10):2771.
CrossRef
Google scholar
|
[21] |
Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8(1):323-327.
CrossRef
Google scholar
|
[22] |
Mombeshora ET, Muchuweni E, Garcia-Rodriguez R, Davies ML, Nyamori VO, Martincigh BS. A review of graphene derivative enhancers for perovskite solar cells. Nanoscale Adv. 2022;4(9):2057-2076.
CrossRef
Google scholar
|
[23] |
Wu J, Agrawal M, Becerril HA, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano. 2010;4(1):43-48.
CrossRef
Google scholar
|
[24] |
Adetayo AE, Ahmed TN, Zakhidov A, Beall GW. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Adv Opt Mater. 2021;9(14):2002102.
CrossRef
Google scholar
|
[25] |
Kwon OS, Park SJ, Hong J-Y, et al. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano. 2012;6(2):1486-1493.
CrossRef
Google scholar
|
[26] |
Kwon OS, Lee SH, Park SJ, et al. Large-scale graphene micropattern nano-biohybrids: high-performance transducers for FET-type flexible fluidic HIV immunoassays. Adv Mater. 2013;25(30):4177-4185.
CrossRef
Google scholar
|
[27] |
Liu X, Lee EK, Oh JH. Graphene–ruthenium complex hybrid photodetectors with ultrahigh photoresponsivity. Small. 2014;10(18):3700-3706.
CrossRef
Google scholar
|
[28] |
Shang X, Park CH, Jung GY, Kwak SK, Oh JH. Highly enantioselective graphene-based chemical sensors prepared by chiral noncovalent functionalization. ACS Appl Mater Interfaces. 2018;10(42):36194-36201.
CrossRef
Google scholar
|
[29] |
Hou C, Wang H, Zhang Q, Li Y, Zhu M. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater. 2014;26(29):5018-5024.
CrossRef
Google scholar
|
[30] |
Chun S, Kim Y, Jung H, Park W. A flexible graphene touch sensor in the general human touch range. Appl Phys Lett. 2014;105(4):041907.
CrossRef
Google scholar
|
[31] |
Xia S, Wang M, Gao G. Preparation and application of graphene-based wearable sensors. Nano Res. 2022;15(11):9850-9865.
CrossRef
Google scholar
|
[32] |
Kang B, Jang M, Chung Y, et al. Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nat Commun. 2014;5(1):4752.
CrossRef
Google scholar
|
[33] |
Lee EK, Park CH, Lee J, Lee HR, Yang C, Oh JH. Chemically robust ambipolar organic transistor array directly patterned by photolithography. Adv Mater. 2017;29(11):1605282.
CrossRef
Google scholar
|
[34] |
Lee YH, Jang M, Lee MY, Kweon OY, Oh JH. Flexible field-effect transistor-type sensors based on conjugated molecules. Chem. 2017;3(5):724-763.
CrossRef
Google scholar
|
[35] |
Wei P, Liu N, Lee HR, et al. Tuning the Dirac point in CVD-grown graphene through solution processed n-type doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole. Nano Lett. 2013;13(5):1890-1897.
CrossRef
Google scholar
|
[36] |
Liu N, Tian H, Schwartz G, Tok JBH, Ren TL, Bao Z. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014;14(7):3702-3708.
CrossRef
Google scholar
|
[37] |
Chiu UT, Lee B-F, Hu S-K, Yu TF, Lee WY, Chao L. Graphene memory based on a tunable nanometer-thin water layer. J Phys Chem C. 2019;123(17):10842-10848.
CrossRef
Google scholar
|
[38] |
Han X, Wang B, Yang C, et al. Inductive effect in Mn-doped NiO nanosheet arrays for enhanced capacitive and highly stable hybrid supercapacitor. ACS Appl Energy Mater. 2019;2(3):2072-2079.
CrossRef
Google scholar
|
[39] |
Yu WJ, Liao L, Chae SH, Lee YH, Duan X. Toward tunable band gap and tunable Dirac point in bilayer graphene with molecular doping. Nano Lett. 2011;11(11):4759-4763.
CrossRef
Google scholar
|
[40] |
Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652-655.
CrossRef
Google scholar
|
[41] |
Ryu S, Liu L, Berciaud S, et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 2010;10(12):4944-4951.
CrossRef
Google scholar
|
[42] |
Yang Y, Murali R. Binding mechanisms of molecular oxygen and moisture to graphene. Appl Phys Lett. 2011;98(9):093116.
CrossRef
Google scholar
|
[43] |
Vivaldi FM, Dallinger A, Bonini A, et al. Three-dimensional (3D) laser-induced graphene: structure, properties, and application to chemical sensing. ACS Appl Mater Interfaces. 2021;13(26):30245-30260.
CrossRef
Google scholar
|
[44] |
Yan F, Zhang M, Li J. Solution-gated graphene transistors for chemical and biological sensors. Adv Healthc Mater. 2014;3(3):313-331.
CrossRef
Google scholar
|
[45] |
Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112(11):6156-6214.
CrossRef
Google scholar
|
[46] |
Fu W, Jiang L, van Geest EP, Lima LMC, Schneider GF. Sensing at the surface of graphene field-effect transistors. Adv Mater. 2017;29(6):1603610.
CrossRef
Google scholar
|
[47] |
Campbell MG, Liu SF, Swager TM, Dincă M. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J Am Chem Soc. 2015;137(43):13780-13783.
CrossRef
Google scholar
|
[48] |
Lu W, Wu X. Ni-MOF nanosheet arrays: efficient non-noble-metal electrocatalysts for non-enzymatic monosaccharide sensing. New J Chem. 2018;42(5):3180-3183.
CrossRef
Google scholar
|
[49] |
Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev. 2016;307(Part 2):361-381.
CrossRef
Google scholar
|
[50] |
Xie Z, Xu W, Cui X, Wang Y. Recent progress in metal–organic frameworks and their derived nanostructures for energy and environmental applications. ChemSusChem. 2017;10(8):1645-1663.
CrossRef
Google scholar
|
[51] |
Xu G, Nie P, Dou H, Ding B, Li L, Zhang X. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today. 2017;20(4):191-209.
CrossRef
Google scholar
|
[52] |
Yi F-Y, Chen D, Wu M-K, Han L, Jiang H-L. Chemical sensors based on metal–organic frameworks. ChemPlusChem. 2016;81(8):675-690.
CrossRef
Google scholar
|
[53] |
Lei J, Qian R, Ling P, Cui L, Ju H. Design and sensing applications of metal–organic framework composites. TrAC Trends Anal Chem. 2014;58:71-78.
CrossRef
Google scholar
|
[54] |
Campbell MG, Dincă M. Metal–organic frameworks as active materials in electronic sensor devices. Sensors. 2017;17(5):1108.
CrossRef
Google scholar
|
[55] |
Kumar V, Kim K-H, Kumar P, Jeon B-H, Kim J-C. Functional hybrid nanostructure materials: advanced strategies for sensing applications toward volatile organic compounds. Coord Chem Rev. 2017;342:80-105.
CrossRef
Google scholar
|
[56] |
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-organic framework based gas sensors. Adv Sci. 2022;9(6):2104374.
CrossRef
Google scholar
|
[57] |
Zhang L-T, Zhou Y, Han S-T. The role of metal–organic frameworks in electronic sensors. Angew Chem Int Ed. 2021;60(28):15192-15212.
CrossRef
Google scholar
|
[58] |
Zhu Q-L, Xu Q. Metal–organic framework composites. Chem Soc Rev. 2014;43(16):5468-5512.
CrossRef
Google scholar
|
[59] |
Talin AA, Centrone A, Ford AC, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science. 2014;343(6166):66-69.
CrossRef
Google scholar
|
[60] |
Roushani M, Valipour A, Saedi Z. Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sens Actuators B. 2016;233:419-425.
CrossRef
Google scholar
|
[61] |
Wang L, Yang H, He J, Zhang Y, Yu J, Song Y. Cu-hemin metal-organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim Acta. 2016;213:691-697.
CrossRef
Google scholar
|
[62] |
Chen Q, Li X, Min X, et al. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J Electroanal Chem. 2017;789:114-122.
CrossRef
Google scholar
|
[63] |
Wang X, Wang Q, Wang Q, et al. Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces. 2014;6(14):11573-11580.
CrossRef
Google scholar
|
[64] |
Wang Y, Hou C, Zhang Y, He F, Liu M, Li X. Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. J Mater Chem B. 2016;4(21):3695-3702.
CrossRef
Google scholar
|
[65] |
Wang Y, Zhang Y, Hou C, Liu M. Magnetic Fe3O4@MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine. RSC Adv. 2015;5(119):98260-98268.
CrossRef
Google scholar
|
[66] |
Zheng Y-Y, Li C-X, Ding X-T, et al. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin Chem Lett. 2017;28(7):1473-1478.
CrossRef
Google scholar
|
[67] |
Ke F, Peng C, Zhang T, et al. Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea. Sci Rep. 2018;8(1):939.
CrossRef
Google scholar
|
[68] |
Hmadeh M, Lu Z, Liu Z, et al. New porous crystals of extended metal-catecholates. Chem Mater. 2012;24(18):3511-3513.
CrossRef
Google scholar
|
[69] |
Campagnol N, Van Assche T, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. J Mater Chem A. 2013;1(19):5827-5830.
CrossRef
Google scholar
|
[70] |
Denny MS, Moreton JC, Benz L, Cohen SM. Metal–organic frameworks for membrane-based separations. Nat Rev Mater. 2016;1(12):16078.
CrossRef
Google scholar
|
[71] |
Falcaro P, Ricco R, Doherty CM, Liang K, Hill AJ, Styles MJ. MOF positioning technology and device fabrication. Chem Soc Rev. 2014;43(16):5513-5560.
CrossRef
Google scholar
|
[72] |
Zheng Y, Zheng S, Xue H, Pang H. Metal-organic frameworks/graphene-based materials: preparations and applications. Adv Funct Mater. 2018;28(47):1804950.
CrossRef
Google scholar
|
[73] |
Iwu KO, Lombardo A, Sanz R, Scirè S, Mirabella S. Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens Actuators B. 2016;224:764-771.
CrossRef
Google scholar
|
[74] |
Ciszewski A, Stepniak I. Nanoparticles of Ni(OH)2 embedded in chitosan membrane as electrocatalyst for non-enzymatic oxidation of glucose. Electrochim Acta. 2013;111:185-191.
CrossRef
Google scholar
|
[75] |
Neramittagapong A, Attaphaiboon W, Neramittagapong S. Acetaldehyde production from ethanol over Ni-based catalysts. Chiang Mai J Sci. 2008;35(1):171-177.
|
[76] |
Barbosa AFB, Oliveira VL, van Drunen J, Tremiliosi-Filho G. Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: temperature influence and reaction mechanism. J Electroanal Chem. 2015;746:31-38.
CrossRef
Google scholar
|
[77] |
Kadir RA, Rani RA, Zoolfakar AS, et al. Nb2O5 Schottky based ethanol vapour sensors: effect of metallic catalysts. Sens Actuators B. 2014;202:74-82.
CrossRef
Google scholar
|
[78] |
Zhu Z, Wu R-J. The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem Eng. 2015;50:276-281.
CrossRef
Google scholar
|
[79] |
Mirzaei A, Leonardi SG, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int. 2016;42(14):15119-15141.
CrossRef
Google scholar
|
[80] |
Song X, Wang X, Li Y, et al. 2D semiconducting metal–organic framework thin films for organic spin valves. Angew Chem Int Ed. 2020;59(3):1118-1123.
CrossRef
Google scholar
|
[81] |
Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312-1314.
CrossRef
Google scholar
|
[82] |
Luong ND, Sinh LH, Johansson L-S, Campell J, Seppälä J. Functional graphene by thiol-ene click chemistry. Chemistry. 2015;21(8):3183-3186.
CrossRef
Google scholar
|
[83] |
Nicosia C, Huskens J. Reactive self-assembled monolayers: from surface functionalization to gradient formation. Mater Horiz. 2014;1(1):32-45.
CrossRef
Google scholar
|
[84] |
Li Y, Bao L, Zhou Q, Ou E, Xu W. Functionalized graphene obtained via thiol-Ene click reactions as an efficient electrochemical sensor. ChemistrySelect. 2017;2(29):9284-9290.
CrossRef
Google scholar
|
[85] |
Farivar F, Lay Yap P, Tung TT, Losic D. Highly water dispersible functionalized graphene by thermal thiol-Ene click chemistry. Materials. 2021;14(11):2830.
CrossRef
Google scholar
|
[86] |
Xu G, Ding B, Pan J, Nie P, Shen L, Zhang X. High performance lithium–sulfur batteries: advances and challenges. J Mater Chem A. 2014;2(32):12662-12676.
CrossRef
Google scholar
|
[87] |
Peng Z, Li H, Li Q, Hu Y. Microwave-assisted thiol-ene click chemistry of carbon nanoforms. Colloids Surf A Physicochem Eng Asp. 2017;533:48-54.
CrossRef
Google scholar
|
[88] |
Ohara H, Yamamoto S, Kuzuhara D, Koganezawa T, Oikawa H, Mitsuishi M. Layer-by-layer growth control of metal–organic framework thin films assembled on polymer films. ACS Appl Mater Interfaces. 2020;12(45):50784-50792.
CrossRef
Google scholar
|
[89] |
Kim K-J, Zhang Y, Kreider PB, et al. Nucleation and growth of oriented metal-organic framework thin films on thermal SiO2 surface. Thin Solid Films. 2018;659:24-35.
CrossRef
Google scholar
|
[90] |
Yoon JW, Jo Y-M, Lee J-H. Type-II BiVO4/Ni3(hexahydroxytriphenylene)2 heterojunction photoanodes for effective photoelectrochemical reaction. Energy Adv. 2022;1(4):197-204.
CrossRef
Google scholar
|
[91] |
Tang C, Cheng N, Pu Z, Xing W, Sun X. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed. 2015;54(32):9351-9355.
CrossRef
Google scholar
|
[92] |
Wen P, Gong P, Sun J, Wang J, Yang S. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J Mater Chem A. 2015;3(26):13874-13883.
CrossRef
Google scholar
|
[93] |
Wang Y, Xie C, Liu D, Huang X, Huo J, Wang S. Nanoparticle-stacked porous nickel–iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl Mater Interfaces. 2016;8(29):18652-18657.
CrossRef
Google scholar
|
[94] |
Joya KS, Joya YF, de Groot HJM. Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3−/CO2 system at near-neutral pH. Adv Energy Mater. 2014;4(9):1301929.
CrossRef
Google scholar
|
[95] |
Yang Y, Ji W, Yin Y, et al. Catalytic modification of porous two-dimensional Ni-MOFs on portable electrochemical paper-based sensors for glucose and hydrogen peroxide detection. Biosensors. 2023;13(5):508.
CrossRef
Google scholar
|
[96] |
Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.
CrossRef
Google scholar
|
[97] |
Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol. 2008;3(4):210-215.
CrossRef
Google scholar
|
[98] |
Leong WS, Wang H, Yeo J, et al. Paraffin-enabled graphene transfer. Nat Commun. 2019;10(1):867.
CrossRef
Google scholar
|
[99] |
Kim W, Javey A, Vermesh O, Wang Q, Li Y, Dai H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003;3(2):193-198.
CrossRef
Google scholar
|
[100] |
Karp G. Cell and Molecular Biology: Concepts and Experiments 5th Edition with Take Note Set. John Wiley & Sons, Limited; 2008.
|
[101] |
Kwon KC, Choi KS, Kim BJ, Lee JL, Kim SY. Work-function decrease of graphene sheet using alkali metal carbonates. J Phys Chem C. 2012;116(50):26586-26591.
CrossRef
Google scholar
|
[102] |
Naghavi SS, Gruhn T, Alijani V, et al. Theoretical study of new acceptor and donor molecules based on polycyclic aromatic hydrocarbons. J Mol Spectrosc. 2011;265(2):95-101.
CrossRef
Google scholar
|
[103] |
Kang SJ, Yeonjin YI, Kim CY, Whang CN. Electronic structure of pentacene on hafnium studied by ultraviolet photoelectron spectroscopy. J Korean Phys Soc. 2005;46(4):L760-L762.
|
[104] |
Kim Y, Lee EK, Oh JH. Organic electronics: flexible low-power operative organic source-gated transistors (Adv. Funct. Mater. 27/2019). Adv Funct Mater. 2019;29(27):1970189.
|
[105] |
Chang Y-H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast Photodetection. ACS Nano. 2014;8(8):8582-8590.
CrossRef
Google scholar
|
/
〈 | 〉 |