Heterologous synthesis of N and M fragments of capsid protein VP2 of avian infectious bursal disease virus in yeast Pichia pastoris

Andrey M. Rumyantsev , Mikhail A. Tsygankov , Vladislav V. Veretennikov , Elena V. Sambuk , Marina V. Padkina

Ecological Genetics ›› 2022, Vol. 20 ›› Issue (1) : 49 -59.

PDF
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (1) : 49 -59. DOI: 10.17816/ecogen83441
Methodology in ecological genetics
research-article

Heterologous synthesis of N and M fragments of capsid protein VP2 of avian infectious bursal disease virus in yeast Pichia pastoris

Author information +
History +
PDF

Abstract

BACKGROUND: Infectious bursal disease is one of the most common and economically important viral diseases of birds. Vaccination is currently the most effective way to control IBD. Subunit vaccines contain only the immunogenic protein of the pathogen or its fragments, but do not contain other proteins, lipopolysaccharides, toxins, which avoids vaccination side effects.

AIM: The aim of the work was to obtain yeast Pichia pastoris strains that synthesize and secrete the fragments of major coat protein VP2 of the infectious bursal disease virus.

MATERIALS AND METHODS: The DNA sequences encoding the N and M fragments of VP2 protein, were cloned under the control of the AOX1 gene promoter and integrated into the genome of P. pastoris strains X-33 (mut+) and GS115 (his4).

RESULTS: The analysis of proteins secreted by the obtained strains revealed the presence of additional proteins with a molecular weights corresponding to the target proteins.

CONCLUSIONS: Thus, the obtained strains of P. pastoris – producers of N and M fragments of VP2 protein can be used for antigen production to create a subunit vaccine against avian IBD.

Keywords

avian infectious bursal disease (IBD) / virus IBD VP2 protein / yeast Pichia pastoris / heterologous protein synthesis

Cite this article

Download citation ▾
Andrey M. Rumyantsev, Mikhail A. Tsygankov, Vladislav V. Veretennikov, Elena V. Sambuk, Marina V. Padkina. Heterologous synthesis of N and M fragments of capsid protein VP2 of avian infectious bursal disease virus in yeast Pichia pastoris. Ecological Genetics, 2022, 20(1): 49-59 DOI:10.17816/ecogen83441

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marangon S, Busani L. The use of vaccination in poultry production. Rev Sci Tech. 2007;26(1):265–274. DOI: 10.20506/rst.26.1.1742

[2]

Marangon S., Busani L. The use of vaccination in poultry production // Rev Sci Tech. 2007. Vol. 26. No. 1. P. 265–274. DOI: 10.20506/rst.26.1.1742

[3]

Hon CC, Lam TT, Yip CW, et al. Phylogenetic evidence for homologous recombination within the family Birnaviridae. J Gen Virol. 2008;89(12):3156–3164. DOI: 10.1099/vir.0.2008/004101-0

[4]

Hon C.C., Lam T.T., Yip C.W., et al. Phylogenetic evidence for homologous recombination within the family Birnaviridae // J Gen Virol. 2008. Vol. 89. No. 12. P. 3156–3164. DOI: 10.1099/vir.0.2008/004101-0

[5]

Berg TP. Acute infectious bursal disease in poultry: a review. Avian Pathol. 2000;29(3):175–194. DOI: 10.1080/03079450050045431

[6]

Berg T.P. Acute infectious bursal disease in poultry: a review // Avian Pathol. 2000. Vol. 29. No. 3. P. 175–194. DOI: 10.1080/03079450050045431

[7]

Muller H, Mundt E, Eterradossi N, Islam MR. Current status of vaccines against infectious bursal disease. Avian Pathol. 2012;41(2):133–139. DOI: 10.1080/03079457.2012.661403

[8]

Muller H., Mundt E., Eterradossi N., Islam M.R. Current status of vaccines against infectious bursal disease // Avian Pathol. 2012. Vol. 41. No. 2. P. 133–139. DOI: 10.1080/03079457.2012.661403

[9]

Rumyantsev AM, Sidorin AV, Sambuk EV, Padkina MV. Modern technologies for the production of vaccines against avian infectious diseases. Ecological genetics. 2021;19(3):241–262. (In Russ.) DOI: 10.17816/ecogen71021

[10]

Румянцев А.М., Сидорин А.В., Самбук Е.В., Падкина М.В. Современные технологии производства вакцин против инфекционных болезней птиц // Экологическая генетика. 2021. Т. 19, № 3. С. 241–262. DOI: 10.17816/ecogen71021

[11]

Ellis RW. Development of combination vaccines. Vaccine. 1999;17(13–14):1635–1642. DOI: 10.1016/s0264-410x(98)00424-1

[12]

Ellis R.W. Development of combination vaccines // Vaccine. 1999. Vol. 17. No. 13–14. P. 1635–1642. DOI: 10.1016/s0264-410x(98)00424-1

[13]

Azad AA, Barrett SA, Fahey KJ. The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology. 1985;143(1):35–44. DOI: 10.1016/0042-6822(85)90094-7

[14]

Azad A.A., Barrett S.A., Fahey K.J. The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus // Virology. 1985. Vol. 143. No. 1. P. 35–44. DOI: 10.1016/0042-6822(85)90094-7

[15]

Jagadish MN, Staton VJ, Hudson PJ, Azad AA. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. J Virol. 1988;62(3):1084–1087. DOI: 10.1128/JVI.62.3.1084-1087.1988

[16]

Jagadish M.N., Staton V.J., Hudson P.J., Azad A.A. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide // J Virol. 1988. Vol. 62. No. 3. P. 1084–1087. DOI: 10.1128/JVI.62.3.1084-1087.1988

[17]

Da Costa B, Chevalier C, Henry C, et al. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol. 2002;76(5):2393–2402. DOI: 10.1128/jvi.76.5.2393-2402.2002

[18]

Da Costa B., Chevalier C., Henry C., et al. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2 // J Virol. 2002. Vol. 76. No. 5. P. 2393–2402. DOI: 10.1128/jvi.76.5.2393-2402.2002

[19]

Lee CC, Ko TP, Chou CC, et al. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol. 2006;155(1):74–86. DOI: 10.1016/j.jsb.2006.02.014

[20]

Lee C.C., Ko T.P., Chou C.C., et al. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity // J Struct Biol. 2006. Vol. 155. No. 1. P. 74–86. DOI: 10.1016/j.jsb.2006.02.014

[21]

Letzel T, Coulibaly F, Rey FA, et al. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus. J Virol. 2007;81(23):12827–12835. DOI: 10.1128/JVI.01501-07

[22]

Letzel T., Coulibaly F., Rey F.A., et al. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus // J Virol. 2007. Vol. 81. No. 23. P. 12827–12835. DOI: 10.1128/JVI.01501-07

[23]

Eckart MR, Bussineau CM. Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol. 1996;7(5):525–530. DOI: 10.1016/s0958-1669(96)80056-5

[24]

Eckart M.R., Bussineau C.M. Quality and authenticity of heterologous proteins synthesized in yeast // Curr Opin Biotechnol. 1996. Vol. 7. No. 5. P. 525–530. DOI: 10.1016/s0958-1669(96)80056-5

[25]

Berlec A, Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2013;40(3–4):257–274. DOI: 10.1007/s10295-013-1235-0

[26]

Berlec A., Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells // J Ind Microbiol Biotechnol. 2013. Vol. 40. No. 3–4. P. 257–274. DOI: 10.1007/s10295-013-1235-0

[27]

Celik E, Calık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–1118. DOI: 10.1016/j.biotechadv.2011.09.011

[28]

Celik E., Calık P. Production of recombinant proteins by yeast cells // Biotechnol Adv. 2012. Vol. 30. No. 5. P. 1108–1118. DOI: 10.1016/j.biotechadv.2011.09.011

[29]

Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317. DOI: 10.1007/s00253-014-5732-5

[30]

Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production // Appl Microbiol Biotechnol. 2014. Vol. 98. No. 12. P. 5301–5317. DOI: 10.1007/s00253-014-5732-5

[31]

Dzhavadov ED, Rumyantsev AM, Veretennikov VV, Tarlavin NV. The use of recombinant protein vp2 as a sub-unit vaccine against infectious bursal disease. International Bulletin of Veterinary Medicine. 2021;(3):9–14. (In Russ.) DOI: 10.17238/issn2072-2419.2021.3.19

[32]

Джавадов Э.Д., Румянцев А.М., Веретенников В.В., Тарлавин Н.В. Использование рекомбинантного белка VP2 в качестве субъединичной вакцины против инфекционной бурсальной болезни // Международный вестник ветеринарии. 2021. № 3. С. 9–14. DOI: 10.17238/issn2072-2419.2021.3.19

[33]

Web.mit.edu [Internet]. “Smash and Grab” Yeast Genomic Prep. Metodika vydeleniya DNK, “Smash and Grab” [cited 12.10.2021]. Available from: http://web.mit.edu/biology/guarente/protocols/quickprep.html

[34]

Web.mit.edu [интернет]. “Smash and Grab” Yeast Genomic Prep. Методика выделения ДНК, “Smash and Grab” [дата обращения 12.10.21]. Доступ по ссылке: http://web.mit.edu/biology/guarente/protocols/quickprep.html

[35]

Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004;36(1):152–154. DOI: 10.2144/04361DD02

[36]

Wu S., Letchworth G.J. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol // Biotechniques. 2004. Vol. 36. No. 1. P. 152–154. DOI: 10.2144/04361DD02

[37]

Maniatis T, Frich Eh, Sehmbruk Dzh. Metody geneticheskoi inzhenerii. Molekulyarnoe klonirovanie. Moscow: Mir, 1984. 480 p. (In Russ.)

[38]

Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Москва: Мир, 1984. 480 с.

[39]

Padkina MV, Parfenova LV, Gradoboeva AE, Sambuk EV. Heterologous interferons synthesis in yeast Pichia pastoris. Appl Biochem Microbiol. 2010;46:409–414. DOI: 10.1134/S0003683810040083

[40]

Padkina M.V., Parfenova L.V., Gradoboeva A.E., Sambuk E.V. Heterologous interferons synthesis in yeast Pichia pastoris // Appl Biochem Microbiol. 2010. Vol. 46. P. 409–414. DOI: 10.1134/S0003683810040083

[41]

Azad AA, McKern NM, Macreadie IG, et al. Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine. 1991;9(10): 715–722. DOI: 10.1016/0264-410x(91)90286-f

[42]

Azad A.A., McKern N.M., Macreadie I.G., et al. Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus // Vaccine. 1991. Vol. 9. No. 10. P. 715–722. DOI: 10.1016/0264-410x(91)90286-f

[43]

Pradhan SN, Prince PR, Madhumathi J, et al. Protective immune responses of recombinant VP2 subunit antigen of infectious bursal disease virus in chickens. Vet Immunol Immunopathol. 2012;148(3–4): 293–301. DOI: 10.1016/j.vetimm.2012.06.019

[44]

Pradhan S.N., Prince P.R., Madhumathi J., et al. Protective immune responses of recombinant VP2 subunit antigen of infectious bursal disease virus in chickens // Vet Immunol Immunopathol. 2012. Vol. 148. No. 3–4. P. 293–301. DOI: 10.1016/j.vetimm.2012.06.019

[45]

Arnold M, Durairaj V, Mundt E, et al. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PLoS One. 2012;7(9): e42870. DOI: 10.1371/journal.pone.0042870

[46]

Arnold M., Durairaj V., Mundt E., et al. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit // PLoS One. 2012. Vol. 7. No. 9. ID e42870. DOI: 10.1371/journal.pone.0042870

[47]

Pitcovski J, Gutter B, Gallili G, et al. Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens. Vaccine. 2003;21(32):4736–4743. DOI: 10.1016/s0264-410x(03)00525-5

[48]

Pitcovski J., Gutter B., Gallili G., et al. Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens // Vaccine. 2003. Vol. 21. No. 32. P. 4736–4743. DOI: 10.1016/s0264-410x(03)00525-5

[49]

Taghavian O, Spiegel H, Hauck R, et al. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One. 2013;8(12): e83210. DOI: 10.1371/journal.pone.0083210

[50]

Taghavian O., Spiegel H., Hauck R., et al. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris // PLoS One. 2013. Vol. 8. No. 12. ID e83210. DOI: 10.1371/journal.pone.0083210

[51]

Salehinia J, Sadeghi HMM, Abedi D, Akbari V. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies. Res Pharm Sci. 2018;13(6):566–574. DOI: 10.4103/1735-5362.245968

[52]

Salehinia J., Sadeghi H.M.M., Abedi D., Akbari V. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies // Res Pharm Sci. 2018. Vol. 13. No. 6. P. 566–574. DOI: 10.4103/1735-5362.245968

[53]

Esmaili I, Mohammad Sadeghi HM, Akbari V. Effect of buffer additives on solubilization and refolding of reteplase inclusion bodies. Res Pharm Sci. 2018;13(5):413–421. DOI: 10.4103/1735-5362.236834

[54]

Esmaili I., Mohammad Sadeghi H.M., Akbari V. Effect of buffer additives on solubilization and refolding of reteplase inclusion bodies // Res Pharm Sci. 2018. Vol. 13. No. 5. P. 413–421. DOI: 10.4103/1735-5362.236834

[55]

Shi R, Pan Q, Guan Y, et al. Imidazole as a catalyst for in vitro refolding of enhanced green fluorescent protein. Arch Biochem Biophys. 2007;459(1):122–128. DOI: 10.1016/j.abb.2006.11.002

[56]

Shi R., Pan Q., Guan Y., et al. Imidazole as a catalyst for in vitro refolding of enhanced green fluorescent protein // Arch Biochem Biophys. 2007. Vol. 459. No. 1. P. 122–128. DOI: 10.1016/j.abb.2006.11.002

[57]

Arakawa T, Ejima D, Tsumoto K, et al. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem. 2007;127(1–2):1–8. DOI: 10.1016/j.bpc.2006.12.007

[58]

Arakawa T., Ejima D., Tsumoto K., et al. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects // Biophys Chem. 2007. Vol. 127. No. 1–2. P. 1–8. DOI: 10.1016/j.bpc.2006.12.007

[59]

Schuchner S, Behm C, Mudrak I, Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Sci Signal. 2020;13(616): eaax9730. DOI: 10.1126/scisignal.aax9730

[60]

Schuchner S., Behm C., Mudrak I., Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context // Sci Signal. 2020. Vol. 13. No. 616. ID eaax9730. DOI: 10.1126/scisignal.aax9730

Funding

Санкт-Петербургский государственный университет(75428571)

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/