A comparative analysis of genetic diversity of natural elk (Alces alces L.) populations from European Russia and Sumarokov elk farm population

Vera M. Makeeva , Andrey V. Smurov , Anatoliy P. Kaledin , Artem M. Ostapchuk , Ivan D. Alazneli , Eduard A. Snegin

Ecological Genetics ›› 2021, Vol. 19 ›› Issue (4) : 303 -312.

PDF (573KB)
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (4) : 303 -312. DOI: 10.17816/ecogen76145
Genetic basis of ecosystems evolution
research-article

A comparative analysis of genetic diversity of natural elk (Alces alces L.) populations from European Russia and Sumarokov elk farm population

Author information +
History +
PDF (573KB)

Abstract

AIM: The aim of the study is to compare the genetic diversity of two natural elk populations from the hunting farms in adjacent regions (Kostromskaya and Yaroslavskaya oblasts) with that of the man-made population of an elk farm.

MATERIALS AND METHODS: The genetic diversity analysis was carried out using DNA-markers represented by nine microsatellite loci (169 samples).

RESULTS: The genetic diversity level in the wild populations is reliably higher than in the elk farm population: the average allele-per-locus numbers (NA) for the natural populations are 9.0 and 8.6 respectively, for the elk farm population – 5.9. All the populations studied do not differ in average heterozygosity level. The allele frequency heterogeneity test shows that all the populations differ in 6 loci and a sum of 9 loci, the natural populations differ in 5 loci, and the elk farm population differs from both the natural ones in the same 3 loci. The inbreeding coefficient for the Yaroslavskaya population (0.167) is way higher than for the Kostromskaya population (0.053), it is 0.165 for the elk farm population. With the identified gene flow (Nm = 16.7), the genetic divergence of the wild populations persists, so they do not stem from a single population.

CONCLUSIONS: The slump found in the genetic diversity of natural elk population points to the necessity of gene pool enrichment, and the high inbreeding in wild populations implies that control over gene pool is needed.

Keywords

elk / population / gene pool / genetic diversity

Cite this article

Download citation ▾
Vera M. Makeeva, Andrey V. Smurov, Anatoliy P. Kaledin, Artem M. Ostapchuk, Ivan D. Alazneli, Eduard A. Snegin. A comparative analysis of genetic diversity of natural elk (Alces alces L.) populations from European Russia and Sumarokov elk farm population. Ecological Genetics, 2021, 19(4): 303-312 DOI:10.17816/ecogen76145

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaledin AP, Yuldashbaev YuA., Kubatbekov TS, et al. Economic and mathematical model for size and structure optimisation of predator and prey populations. International journal of recent technology and engineering (IJRTE-BEIESP). 2019;8(4):9081–9090. DOI: 10.35940/ijrte.D4540

[2]

Kaledin A.P., Yuldashbaev Yu.A., Kubatbekov T.S., et al. Economic and mathematical model for size and structure optimisation of predator and prey populations // International journal of recent technology and engineering (IJRTE-BEIESP). 2019. Vol. 8. No. 4. P. 9081–9090. DOI: 10.35940/ijrte.D4540

[3]

Kaledin AP, Ostapchuk AM, Makeeva VM, et al. Dinamika chislennosti populyatsii okhotnich’ikh zverei i ptits i ikh stoimostnaya otsenka v Kostromskom regione. Proceedings of the 8 International science conference “Sokhranenie raznoobraziya zhivotnykh i okhotnich’e khozyaistvo Rossii”; 2019 Feb 21–22; Moscow; 2019 Feb 21–22; Ivanovo: PK PreSSto, 2019. P. 132–135. (In Russ.)

[4]

Каледин А.П., Остапчук А.М., Макеева В.М., и др. Динамика численности популяций охотничьих зверей и птиц и их стоимостная оценка в Костромском регионе // VIII Международная научно-практическая конференция «Сохранение разнообразия животных и охотничье хозяйство России»; Февраль 21–22, 2019; Москва. Февраль 21–22, 2019; Иваново. ПК ПресСто; 2019. С. 132–135.

[5]

Kaledin AP, Nikolaev AA, Filatov AI, et al. Regional forecasts of population dynamics of elk in the Yaroslavl Region on the basis of model experiments. International scientific journal. 2017;(3):43–47. (In Russ.)

[6]

Каледин А.П., Николаев А.А., Филатов А.И., и др. Региональный аспект прогнозирования динамики численности лося в Ярославской области на основе модельных экспериментов // Международный научный журнал. 2017. № . 3. С. 43–47.

[7]

Altukhov YuP. Geneticheskie protsessy v populyatsiyakh: uchebnoe posobie. 3-e izd., pererab. i dop. Moscow: IKTS Akademkniga, 2003. 431 p. (In Russ.)

[8]

Алтухов Ю.П. Генетические процессы в популяциях: учебное пособие. 3-е изд., перераб. и доп. М.: ИКЦ Академкнига, 2003. 431 c.

[9]

Makeeva VM, Belokon MM, Smurov AV. Genourbanology as the basis for stable biodiversity and ecosystem conservation under global urbanization. Uspekhi sovremennoi biologii. 2013;133(1):19–34. (In Russ.) DOI: 10.1134/S207908641304004X

[10]

Макеева В.М., Белоконь М.М., Смуров А.В. Геноурбанология как основа устойчивого сохранения биоразнообразия и экосистем в условиях глобальной урбанизации // Успехи современной биологии. 2013. Т. 133, № 1. С. 19–34. DOI: 10.1134/S207908641304004X

[11]

Makeeva VM, Smurov AV, Kaledin AP, et al. On the necessity of monitoring the gene pool of Elk populations (Alces alces L.) in elk farms. Con Dai & Vet Sci. 2020;3(5):356–358. DOI: 10.32474/CDVS.2020.03.000175

[12]

Makeeva V.M., Smurov A.V., Kaledin A.P., et al. On the necessity of monitoring the gene pool of Elk populations (Alces alces L.) in elk farms // Con Dai & Vet Sci. 2020. Vol. 3. No. 5. P. 356–358. DOI: 10.32474/CDVS.2020.03.000175

[13]

Bishop MD, Kappes SM, Keele JW, еt al. A genetic linkage map for cattle. Genetics. 1994;(136):619–639. DOI: 10.1093/genetics/136.2.619

[14]

Bishop M.D., Kappes S.M., Keele J.W., еt al. A genetic linkage map for cattle // Genetics. 1994. No. 136. P. 619–639. DOI: 10.1093/genetics/136.2.619

[15]

Moore SS, Barendse W, Berger KT, et al. Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Animal Genetics. 1992;(23):463–467. DOI: 10.1111/j.1365–2052.1992.tb02168.x

[16]

Moore S.S., Barendse W., Berger K.T., et al. Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases // Animal Genetics. 1992. No. 23. Р. 463–467. DOI: 10.1111/j.1365-2052.1992.tb02168.x

[17]

Rǿed КН, Midthjell L. Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol Ecol. 1998;(7):1773–1776. DOI: 10.1046/j.1365-294x.1998.00514.x

[18]

Rǿed К.Н., Midthjell L. Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids // Mol Ecol. 1998. No. 7. P. 1773–1776. DOI: 10.1046/j.1365-294x.1998.00514.x

[19]

Wilson GA, Strobeck C, Wu L, Coffin JW. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other Artiodactyls. Mol Ecol. 1997;(6):697–699. DOI: 10.1046/j.1365-294X.1997.00237.x

[20]

Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other Artiodactyls // Mol Ecol. 1997. No. 6. Р. 697–699. DOI: 10.1046/j.1365-294X.1997.00237.x

[21]

Glynis NR Price. Phylogeography and structuring of Moose (Alces alces) populations in Ontario, Canada [dissertation]. Canada, Ontario: Trent University Peterborough, 2016. 136 p.

[22]

Glynis NR Price. Phylogeography and structuring of Moose (Alces alces) populations in Ontario, Canada: dissertation. Canada, Ontario: Trent University Peterborough, 2016. 136 p.

[23]

Yeh FC, Yang R, Boyle T. POPGENE (version 1.32): Microsoft Windows-based freeware for population genetic analysis. Univ Alberta, Center Int Forest Res: Edmonton, 1999.

[24]

Yeh F.C., Yang R., Boyle T. POPGENE (version 1.32): Microsoft Windows-based freeware for population genetic analysis. Univ. Alberta, Center Int. Forest. Res.: Edmonton, 1999.

[25]

Peakall R, Smouse PE. GenAIEx V6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–295. DOI: 10.1111/j.1471-8286.2005.01155.x

[26]

Peakall R., Smouse P.E. GenAIEx V6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol Ecol Notes. 2006. Vol. 6. No. 1. P. 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x

[27]

Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;(28):2537–2539. DOI: 10.1093/bioinformatics/bts460

[28]

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update // Bioinformatics. 2012. No. 28. P. 2537–2539. DOI: 10.1093/bioinformatics/bts460

[29]

Wright S. Random drift and shitting balance theory and evolution. In: Mathematical topics in population genetics. Berlin: Springer-Verlag: 1970. P. 1–31. DOI: 10.1007/978-3-642-46244-3_1

[30]

Wright S. Random drift and shitting balance theory and evolution. In: Mathematical topics in population genetics. Berlin: Springer-Verlag, 1970. P. 1–31. DOI: 10.1007/978-3-642-46244-3_1

[31]

Nei M. Genetic distance between populations. The American Naturalist. 1972;(106):283–292. DOI: 10.1086/282771

[32]

Nei M. Genetic distance between populations // The American Naturalist. 1972. No. 106. P. 283–292. DOI: 10.1086/282771

[33]

Panchenko DV, Topchieva LV, Rendakov NL, et al. Genetic diversity of Karelian moose population: microsatellite analysis. Vestnik okhotovedeniya. 2010;7(2):280–283. (In Russ.) DOI: 10.25687/1996–6733.prodanimbiol.2018.1.75–82

[34]

Панченко Д.В., Топчиева Л.В., Рендаков Н.Л., и др. Генетическое разнообразие популяции лося в Карелии: микросателлитный анализ // Вестник охотоведения. 2010. Т. 7, № 2. С. 280–283. DOI: 10.25687/1996-6733.prodanimbiol.2018.1.75–82

[35]

Marzanov NS, Devrishov DA, Marzanova SN, et al. Population-genetic characteristics of moose by microsatellite loci. Problems of Productive Animal Biology. 2018;(1):75–82. (In Russ.) DOI: 10.25687/1996-6733.prodanimbiol

[36]

Марзанов Н.С., Девришов Д.А., Марзанова С.Н., и др. Популяционно-генетическая характеристика лося по локусам микросателлитов // Проблемы биологии продуктивных животных. 2018. № 1. С. 75–82. DOI: 10.25687/1996-6733.prodanimbiol

[37]

Youngmann JL, Deyoung RW, Demaralis S, et al. Genetic characteristics of restored elk populations in Kentucky. The Journal of wildlife management. 2020;84(3):515–523. DOI: 10.1002/jwmg.21817

[38]

Youngmann J.L., Deyoung R.W., Demaralis S., et al. Genetic characteristics of restored elk populations in Kentucky // The Journal of wildlife management. 2020. Vol. 84. No. 3. P. 515–523. DOI: 10.1002/jwmg.21817

[39]

Galarza JA, Sanchez-Fernandez B, Fandos P, Soriguer R. Intensive management and natural genetic variation in Red deer (Cervus elaphus). Journal of Heredity. 2017;108(5):496–504. DOI: 10.1093/jhered/esx052

[40]

Galarza J.A., Sanchez-Fernandez B., Fandos P., Soriguer R. Intensive management and natural genetic variation in Red deer (Cervus elaphus) // Journal of Heredity. 2017. Vol. 108. No. 5. P. 496–504. DOI:10.1093/jhered/esx052

[41]

Kholodova MV, Davydov AV, Meshcherskii IG, et al. Izuchenie molekulyarno-geneticheskogo raznoobraziya losya (Alces alces L.) tsentral’noi i severo-zapadnoi chasti Rossii: analiz mtDNK. Vestnik okhotovedeniya. 2005;2(1):26–33. (In Russ.)

[42]

Холодова М.В., Давыдов А.В., Мещерский И.Г., и др. Изучение молекулярно-генетического разнообразия лося (Alces alces L.) Центральной и Северо-Западной части России: анализ мтДНК // Вестник охотоведения. 2005. Т. 2, № 1. С. 26–33.

[43]

Patent RUS № 2620079/ 21.05.17. Byul. No. 15. Makeeva VM, Smurov AV. Sposob podderzhaniya zhiznesposobnosti populyatsii zhivotnykh ili rastenii na urbanizirovannykh territoriyakh. (In Russ.)

[44]

Патент РФ на изобретение № 2620079/ 21.05.17. Бюл. № 15. Макеева В.М., Смуров А.В. Способ поддержания жизнеспособности популяций животных или растений на урбанизированных территориях.

Funding

МГУ имени М.В. Ломоносова: Государственное заданиеLomonosov Moscow State University: State task(АААА-А16-116042010089-2)

AI Summary AI Mindmap
PDF (573KB)

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/