Functions of reactive oxygen species in plant cells under normal conditions and during adaptation

Anton E. Shikov , Tamara V. Chirkova , Vladislav V. Yemelyanov

Ecological Genetics ›› 2021, Vol. 19 ›› Issue (4) : 343 -363.

PDF (1620KB)
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (4) :343 -363. DOI: 10.17816/ecogen75975
Opinions, discussions
review-article

Functions of reactive oxygen species in plant cells under normal conditions and during adaptation

Author information +
History +
PDF (1620KB)

Abstract

The review considers the role of reactive oxygen species in the life of a plant cell. At the same time, attention is paid to both the negative aspects of their effect on cellular components (lipid peroxidation, protein carbonylation, and DNA damage) and positive functions (participation in signaling, stress response, and metabolism). The main types of reactive oxygen species and the sites of their generation in the plant cell are considered. It is concluded that reactive oxygen species, which inevitably arise in any aerobic organisms, should be considered as the most important regulator of a large number of plant processes, such as growth, development, metabolism, senescence, and stress reactions. Moreover, if the role of reactive oxygen species in signaling and under stress has been investigated in sufficient detail, the direct metabolic role has been studied relatively poorly, with the exception of lignin polymerization and softening of the cell wall, which indicates the need for further research in this area.

Keywords

reactive oxygen species / ROS / signaling / metabolism / oxidative stress

Cite this article

Download citation ▾
Anton E. Shikov, Tamara V. Chirkova, Vladislav V. Yemelyanov. Functions of reactive oxygen species in plant cells under normal conditions and during adaptation. Ecological Genetics, 2021, 19(4): 343-363 DOI:10.17816/ecogen75975

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141(2): 312–322. DOI: 10.1104/pp.106.077073

[2]

Halliwell B. Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life // Plant Physiol. 2006. Vol. 141. No. 2. P. 312–322. DOI: 10.1104/pp.106.077073

[3]

Del Río LA. ROS and RNS in plant physiology: An overview. J Exp Bot. 2015;66(10):2827–2837. DOI: 10.1093/jxb/erv099

[4]

Del Río L.A. ROS and RNS in plant physiology: An overview // J Exp Bot. 2015. Vol. 66. No. 10. P. 2827–2837. DOI: 10.1093/jxb/erv099

[5]

Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot. 2005;56(411):337–346. DOI: 10.1093/jxb/erh237

[6]

Krieger-Liszkay A. Singlet oxygen production in photosynthesis // J Exp Bot. 2005. Vol. 56. No. 411. P. 337–346. DOI: 10.1093/jxb/erh237

[7]

Janků M, Luhová L, Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants. 2019;8(4):105. DOI: 10.3390/antiox8040105

[8]

Janků M., Luhová L., Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments // Antioxidants. 2019. Vol. 8. No. 4. P. 105. DOI: 10.3390/antiox8040105

[9]

Keren N, Gong H, Ohad I. Oscillations of Reaction Center II-D1 protein degradation in vivo induced by repetitive light flashes: Correlation between the level of RCII-Q-Band protein degradation in low light. J Biol Chem. 1995;270(2):806–814. DOI: 10.1074/jbc.270.2.806

[10]

Keren N., Gong H., Ohad I. Oscillations of Reaction Center II-D1 protein degradation in vivo induced by repetitive light flashes: Correlation between the level of RCII-Q-Band protein degradation in low light // J Biol Chem. 1995. Vol. 270. No. 2. P. 806–814. DOI: 10.1074/jbc.270.2.806

[11]

Zolla L, Rinalducci S. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry. 2002;41(48):14391–14402. DOI: 10.1021/bi0265776

[12]

Zolla L., Rinalducci S. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses // Biochemistry. 2002. Vol. 41. No. 48. P. 14391–14402. DOI: 10.1021/bi0265776

[13]

Strand Å, Asami T, Alonso J, et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature. 2003;421:79–83. DOI: 10.1038/nature01204

[14]

Strand Å., Asami T., Alonso J., et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX // Nature. 2003. Vol. 421. P. 79–83. DOI: 10.1038/nature01204

[15]

Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208. DOI: 10.2174/0929867053764635

[16]

Valko M., Morris H., Cronin M. Metals, toxicity and oxidative stress // Curr Med Chem. 2005. Vol. 12. No. 10. P. 1161–1208. DOI: 10.2174/0929867053764635

[17]

Gechev TS, Van Breusegem F, Stone JM, et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 2006;28(11):1091–1101. DOI: 10.1002/bies.20493

[18]

Gechev T.S., Van Breusegem F., Stone J.M., et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death // BioEssays. 2006. Vol. 28. No. 11. P. 1091–1101. DOI: 10.1002/bies.20493

[19]

Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–396. DOI: 10.1104/pp.106.082040

[20]

Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions // Plant Physiol. 2006. Vol. 141. No. 2. P. 391–396. DOI: 10.1104/pp.106.082040

[21]

Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11(4):861–905. DOI: 10.1089/ars.2008.2177

[22]

Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications // Antioxid Redox Signal. 2009. Vol. 11. No. 4. P. 861–905. DOI: 10.1089/ars.2008.2177

[23]

Navrot N, Rouhier N, Gelhaye E, Jacquot JP. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant. 2007;129(1):185–195. DOI: 10.1111/j.1399-3054.2006.00777.x

[24]

Navrot N., Rouhier N., Gelhaye E., Jacquot J.P. Reactive oxygen species generation and antioxidant systems in plant mitochondria // Physiol Plant. 2007. Vol. 129. No. 1. P. 185–195. DOI: 10.1111/j.1399-3054.2006.00777.x

[25]

Taylor NL, Tan YF, Jacoby RP, Millar AH. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics. 2009;72(3):367–378. DOI: 10.1016/j.jprot.2008.11.006

[26]

Taylor N.L., Tan Y.F., Jacoby R.P., Millar A.H. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes // J Proteomics. 2009. Vol. 72. No. 3. P. 367–378. DOI: 10.1016/j.jprot.2008.11.006

[27]

Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J Integr Plant Biol. 2008;50(1):2–18. DOI: 10.1111/j.1744–7909.2007.00599.x

[28]

Quan L.J., Zhang B., Shi W.W., Li H.Y. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network // J Integr Plant Biol. 2008. Vol. 50. No. 1. P. 2–18. DOI: 10.1111/j.1744-7909.2007.00599.x

[29]

Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. DOI: 10.3389/fenvs.2014.00053

[30]

Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants // Front Environ Sci. 2014. Vol. 2. P. 53. DOI: 10.3389/fenvs.2014.00053

[31]

Kawano Y, Kaneko-Kawano T, Shimamoto K. Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci. 2014;5:522. DOI: 10.3389/fpls.2014.00522

[32]

Kawano Y., Kaneko-Kawano T., Shimamoto K. Rho family GTPase-dependent immunity in plants and animals // Front Plant Sci. 2014. Vol. 5. P. 522. DOI: 10.3389/fpls.2014.00522

[33]

Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112: 22–32. DOI: 10.1016/j.phytochem.2014.09.016

[34]

Kärkönen A., Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants // Phytochemistry. 2015. Vol. 112. P. 22–32. DOI: 10.1016/j.phytochem.2014.09.016

[35]

Schmitt FJ, Renger G, Friedrich T, et al. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta Bioenerg. 2014;1837(6):835–848. DOI: 10.1016/j.bbabio.2014.02.005

[36]

Schmitt F.J., Renger G., Friedrich T., et al. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms // Biochim Biophys Acta Bioenerg. 2014. Vol. 1837. No. 6. P. 835–848. DOI: 10.1016/j.bbabio.2014.02.005

[37]

Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4): e23681. DOI: 10.4161/psb.23681

[38]

Choudhury S., Panda P., Sahoo L., Panda S.K. Reactive oxygen species signaling in plants under abiotic stress // Plant Signal Behav. 2013. Vol. 8. No. 4. P. e23681. DOI: 10.4161/psb.23681

[39]

Petrov VD, Van Breusegem F. Hydrogen peroxide — a central hub for information flow in plant cells. AoB PLANTS. 2012;2012: pls014. DOI: 10.1093/aobpla/pls014

[40]

Petrov V.D., Van Breusegem F. Hydrogen peroxide – a central hub for information flow in plant cells // AoB PLANTS. 2012. Vol. 2012. ID pls014. DOI: 10.1093/aobpla/pls014

[41]

Sandalio LM, Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot. 2015;116(4):475–485. DOI: 10.1093/aob/mcv074

[42]

Sandalio L.M., Romero-Puertas M.C. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks // Ann Bot. 2015. Vol. 116. No. 4. P. 475–485. DOI: 10.1093/aob/mcv074

[43]

Goyer A, Johnson TL, Olsen LJ, et al. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem. 2004;279(17):16947–16953. DOI: 10.1074/jbc.M400071200

[44]

Goyer A., Johnson T.L., Olsen L.J., et al. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis // J Biol Chem. 2004. Vol. 279. No. 17. P. 16947–16953. DOI: 10.1074/jbc.M400071200

[45]

Byrne RS, Hänsch R, Mendel RR, Hille R. Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: Generation of superoxide by a peroxisomal enzyme. J Biol Chem. 2009;284(51):35479–35484. DOI: 10.1074/jbc.M109.067355

[46]

Byrne R.S., Hänsch R., Mendel R.R., Hille R. Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: Generation of superoxide by a peroxisomal enzyme // J Biol Chem. 2009. Vol. 284. No. 51. P. 35479–35484. DOI: 10.1074/jbc.M109.067355

[47]

Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019;221(3):1197–1214. DOI: 10.1111/nph.15488

[48]

Smirnoff N., Arnaud D. Hydrogen peroxide metabolism and functions in plants // New Phytol. 2019. Vol. 221. No. 3. P. 1197–1214. DOI: 10.1111/nph.15488

[49]

Qi J, Wang J, Gong Z, Zhou JM. Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol. 2017;38:92–100. DOI: 10.1016/j.pbi.2017.04.022

[50]

Qi J., Wang J., Gong Z., Zhou J.M. Apoplastic ROS signaling in plant immunity // Curr Opin Plant Biol. 2017. Vol. 38. P. 92–100. DOI: 10.1016/j.pbi.2017.04.022

[51]

Veitch NC. Structural determinants of plant peroxidase function. Phytochem Rev. 2004;3(1–2):3–18. DOI: 10.1023/B: PHYT.0000047799.17604.94

[52]

Veitch N.C. Structural determinants of plant peroxidase function // Phytochem Rev. 2004. Vol. 3. No. 1–2. P. 3–18. DOI: 10.1023/B: PHYT.0000047799.17604.94

[53]

Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update. Plant Physiol Biochem. 2010;48(7): 560–564. DOI: 10.1016/j.plaphy.2010.02.001

[54]

Angelini R., Cona A., Federico R., et al. Plant amine oxidases “on the move”: An update // Plant Physiol Biochem. 2010. Vol. 48. No. 7. P. 560–564. DOI: 10.1016/j.plaphy.2010.02.001

[55]

Planas-Portell J, Gallart M, Tiburcio AF, Altabella T. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. 2013;13:109. DOI: 10.1186/1471-2229-13-109

[56]

Planas-Portell J., Gallart M., Tiburcio A.F., Altabella T. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana // BMC Plant Biol. 2013. Vol. 13. P. 109.DOI: 10.1186/1471-2229-13-109

[57]

Davidson RM, Reeves PA, Manosalva PM, Leach JE. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177(6):499–510. DOI: 10.1016/j.plantsci.2009.08.012

[58]

Davidson R.M., Reeves P.A., Manosalva P.M., Leach J.E. Germins: A diverse protein family important for crop improvement // Plant Sci. 2009. Vol. 177. No. 6. P. 499–510. DOI: 10.1016/j.plantsci.2009.08.012

[59]

Lane BG. Oxalate oxidases and differentiating surface structure in wheat: Germins. Biochem J. 2000;349(1):309–321. DOI: 10.1042/0264-6021:3490309

[60]

Lane B.G. Oxalate oxidases and differentiating surface structure in wheat: Germins // Biochem J. 2000. Vol. 349. No. 1. P. 309–321. DOI: 10.1042/0264-6021:3490309

[61]

Foyer CH, Noctor G. Ascorbate and glutathione: The heart of the Redox hub. Plant Physiol. 2011;155(1):2–18. DOI: 10.1104/pp.110.167569

[62]

Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the Redox hub // Plant Physiol. 2011. Vol. 155. No. 1. P. 2–18. DOI: 10.1104/pp.110.167569

[63]

Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 2000;57(5):779–795. DOI: 10.1007/s000180050041

[64]

Dat J., Vandenabeele S., Vranová E., et al. Dual action of the active oxygen species during plant stress responses // Cell Mol Life Sci. 2000. Vol. 57. No. 5. P. 779–795. DOI: 10.1007/s000180050041

[65]

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:217037. DOI: 10.1155/2012/217037

[66]

Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J Bot. 2012. Vol. 2012. ID217037. DOI: 10.1155/2012/217037

[67]

Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. DOI: 10.1016/j.plaphy.2010.08.016

[68]

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol Biochem. 2010. Vol. 48. No. 12. P. 909–930. DOI: 10.1016/j.plaphy.2010.08.016

[69]

Anjum NA, Sofo A, Scopa A, et al. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res. 2015;22(6):4099–4121. DOI: 10.1007/s11356-014-3917-1

[70]

Anjum N.A., Sofo A., Scopa A., et al. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants // Environ Sci Pollut Res. 2015. Vol. 22. No. 6. P. 4099–4121. DOI: 10.1007/s11356-014-3917-1

[71]

Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64:429–450. DOI: 10.1146/annurev-arplant-050312-120132

[72]

Farmer E.E., Mueller M.J. ROS-mediated lipid peroxidation and RES-activated signaling // Annu Rev Plant Biol. 2013. Vol. 64. P. 429–450. DOI: 10.1146/annurev-arplant-050312-120132

[73]

Schneider C, Porter NA, Brash AR. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 2008;283(23):15539–15543. DOI: 10.1074/jbc.R800001200

[74]

Schneider C., Porter N.A., Brash A.R. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation // J Biol Chem. 2008. Vol. 283. No. 23. P. 15539–15543. DOI: 10.1074/jbc.R800001200

[75]

Rodriguez Milla MA, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 2003;36(5):602–615. DOI: 10.1046/j.1365–313X.2003.01901.x

[76]

Rodriguez Milla M.A., Maurer A., Huete A.R., Gustafson J.P. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways // Plant J. 2003. Vol. 36. No. 5. P. 602–615. DOI: 10.1046/j.1365-313X.2003.01901.x

[77]

Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J Proteomics. 2008;71(4):391–411. DOI: 10.1016/j.jprot.2008.07.005

[78]

Timperio A.M., Egidi M.G., Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP) // J Proteomics. 2008. Vol. 71. No. 4. P. 391–411. DOI: 10.1016/j.jprot.2008.07.005

[79]

Johansson E, Olsson O, Nyström T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem. 2004;279(21):22204–22208. DOI: 10.1074/jbc.M402652200

[80]

Johansson E., Olsson O., Nyström T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana // J Biol Chem. 2004. Vol. 279. No. 21. P. 22204–22208. DOI: 10.1074/jbc.M402652200

[81]

Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta Proteins Proteom. 2005;1703(2):93–109. DOI: 10.1016/j.bbapap.2004.08.007

[82]

Davies M.J. The oxidative environment and protein damage // Biochim Biophys Acta Proteins Proteom. 2005. Vol. 1703. No. 2. P. 93–109. DOI: 10.1016/j.bbapap.2004.08.007

[83]

Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Ann Rev Plant Biol. 2007;58:459–481. DOI: 10.1146/annurev.arplant.58.032806.103946

[84]

Møller I.M., Jensen P.E., Hansson A. Oxidative modifications to cellular components in plants // Ann Rev Plant Biol. 2007. Vol. 58. P. 459–481. DOI: 10.1146/annurev.arplant.58.032806.103946

[85]

Xu G, Chance MR. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal Chem. 2005;77(14):4549–4555. DOI: 10.1021/ac050299+

[86]

Xu G., Chance M.R. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting // Anal Chem. 2005. Vol. 77. No. 14. P. 4549–4555. DOI: 10.1021/ac050299+

[87]

Sweetlove LJ, Heazlewoo JL, Herald V, et al. The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 2002;32(6): 891–904. DOI: 10.1046/j.1365-313x.2002.01474.x

[88]

Sweetlove L.J., Heazlewoo J.L., Herald V., et al. The impact of oxidative stress on Arabidopsis mitochondria // Plant J. 2002. Vol. 32. No. 6. P. 891–904. DOI: 10.1046/j.1365–313x.2002.01474.x

[89]

Tan Y-F, O’Toole N, Taylor NL, Millar AH. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 2010;152(2):747–761. DOI: 10.1104/pp.109.147942

[90]

Tan Y.-F., O’Toole N., Taylor N.L., Millar A.H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function // Plant Physiol. 2010. Vol. 152. No. 2. P. 747–761. DOI: 10.1104/pp.109.147942

[91]

Roldán-Arjona T, Ariza RR. Repair and tolerance of oxidative DNA damage in plants. Mutat Res Rev Mutat Res. 2009;681(2–3):169–179. DOI: 10.1016/j.mrrev.2008.07.003

[92]

Roldán-Arjona T., Ariza R.R. Repair and tolerance of oxidative DNA damage in plants // Mutat Res Rev Mutat Res. 2009. Vol. 681. No. 2–3. P. 169–179. DOI: 10.1016/j.mrrev.2008.07.003

[93]

Wauchope OR, Mitchener MM, Beavers WN, et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 2018;46(7):3458–3467. DOI: 10.1093/nar/gky089

[94]

Wauchope O.R., Mitchener M.M., Beavers W.N., et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA // Nucleic Acids Res. 2018. Vol. 46. No. 7. P. 3458–3467. DOI: 10.1093/nar/gky089

[95]

Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 2014;164(4):1636–1648. DOI: 10.1104/pp.113.233478

[96]

Noctor G., Mhamdi A., Foyer C.H. The roles of reactive oxygen metabolism in drought: not so cut and dried // Plant Physiol. 2014. Vol. 164. No. 4. P. 1636–1648. DOI: 10.1104/pp.113.233478

[97]

Hernández JA, Jiménez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 2000;23(8): 853–862. DOI: 10.1046/j.1365–3040.2000.00602.x

[98]

Hernández J.A., Jiménez A., Mullineaux P., Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences // Plant Cell Environ. 2000. Vol. 23. No. 8. P. 853–862. DOI: 10.1046/j.1365-3040.2000.00602.x

[99]

Vinit-Dunand F, Epron D, Alaoui-Sossé B, Badot PM. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 2002;163(1):53–58. DOI: 10.1016/S0168–9452(02)00060–2

[100]

Vinit-Dunand F., Epron D., Alaoui-Sossé B., Badot P.M. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants // Plant Sci. 2002. Vol. 163. No. 1. P. 53–58. DOI: 10.1016/S0168–9452(02)00060–2

[101]

Logan BA, Kornyeyev D, Hardison J, Holaday AS. The role of antioxidant enzymes in photoprotection. Photosynth Res. 2006;88(2): 119–132. DOI: 10.1007/s11120-006-9043-2

[102]

Logan B.A., Kornyeyev D., Hardison J., Holaday A.S. The role of antioxidant enzymes in photoprotection // Photosynth Res. 2006. Vol. 88. No. 2. P. 119–132. DOI: 10.1007/s11120-006-9043-2

[103]

Gao Q, Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol. 2008;165(2):138–148. DOI: 10.1016/j.jplph.2007.04.002

[104]

Gao Q., Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana // J Plant Physiol. 2008. Vol. 165. No. 2. P. 138–148. DOI: 10.1016/j.jplph.2007.04.002

[105]

Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35(2): 259–270. DOI: 10.1111/j.1365-3040.2011.02336.x

[106]

Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signalling in the response of plants to abiotic stress // Plant Cell Environ. 2012. Vol. 35. No. 2. P. 259–270. DOI: 10.1111/j.1365-3040.2011.02336.x

[107]

Radwan DEM, Fayez KA, Mahmoud SY, Lu G. Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiol Plant. 2010;32(5):891–904. DOI: 10.1007/s11738-010-0477-y

[108]

Radwan D.E.M., Fayez K.A., Mahmoud S.Y., Lu G. Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus infection and salicylic acid treatments // Acta Physiol Plant. 2010. Vol. 32. No. 5. P. 891–904. DOI: 10.1007/s11738-010-0477-y

[109]

Sasaki-Sekimoto Y, Taki N, Obayashi T, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005;44(4):653–668. DOI: 10.1111/j.1365–313X.2005.02560.x

[110]

Sasaki-Sekimoto Y., Taki N., Obayashi T., et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis // Plant J. 2005. Vol. 44. No. 4. P. 653–668. DOI: 10.1111/j.1365-313X.2005.02560.x

[111]

Liu Y, Ren D, Pike S, et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007;51(6):941–954. DOI: 10.1111/j.1365-313X.2007.03191.x

[112]

Liu Y., Ren D., Pike S., et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade // Plant J. 2007. Vol. 51. No. 6. P. 941–954. DOI: 10.1111/j.1365-313X.2007.03191.x

[113]

Kennedy RA, Rumpho ME, Fox TC. Anaerobic metabolism in plants. Plant Physiol. 1992;100(1):1–6. DOI: 10.1104/pp.100.1.1

[114]

Kennedy R.A., Rumpho M.E., Fox T.C. Anaerobic metabolism in plants // Plant Physiol. 1992. Vol. 100. No. 1. P. 1–6. DOI: 10.1104/pp.100.1.1

[115]

Chirkova TV, Novitskaya LO, Blokhina OB. Perekisnoe okislenie lipidov i aktivnost’ antioksidantnykh sistem pri anoksii u rastenii s raznoi ustoichivost’yu k nedostatku kisloroda. Russian Journal of Plant Physiology. 1998;45(1):65–73. (In Russ.)

[116]

Чиркова Т.В, Новицкая Л.О, Блохина О.Б. Перекисное окисление липидов и активность антиоксидантных систем при аноксии у растений с разной устойчивостью к недостатку кислорода // Физиология растений. 1998. Т. 45, № 1. С. 65–73.

[117]

Chirkova T, Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol Commun. 2018:63(1):17–31. DOI: 10.21638/spbu03.2018.104

[118]

Chirkova T., Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University // Biol Commun. 2018. Vol. 63. No. 1. P. 17–31. DOI: 10.21638/spbu03.2018.104

[119]

Shikov AE, Chirkova TV, Yemelyanov VV. Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russian Journal of Plant Physiology. 2020;67(1):50–66. (In Russ.) DOI: 10.31857/S0015330320010200

[120]

Шиков А.Е., Чиркова Т.В., Емельянов В.В. Постаноксия у растений: причины, последствия и возможные механизмы // Физиология растений. 2020. Т. 67, № 1. С. 50–66. DOI: 10.31857/S0015330320010200

[121]

Devanathan S, Erban A, Perez-Torres R, et al. Arabidopsis thaliana glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth. PLoS ONE. 2014;9(4):e95971. DOI: 10.1371/journal.pone.0095971

[122]

Devanathan S., Erban A., Perez-Torres R., et al. Arabidopsis thaliana glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth // PLoS ONE. 2014. Vol. 9. No. 4. P. e95971. DOI: 10.1371/journal.pone.0095971

[123]

Blokhina O, Virolainen E, Fagerstedt KV, et al. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol Plant. 2000;109(4):396–403. DOI: 10.1034/j.1399-3054.2000.100405.x

[124]

Blokhina O., Virolainen E., Fagerstedt K.V., et al. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration // Physiol Plant. 2000. Vol. 109. No. 4. P. 396–403. DOI: 10.1034/j.1399-3054.2000.100405.x

[125]

Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014:65(5):1229–1240. DOI: 10.1093/jxb/ert375

[126]

Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling // J Exp Bot. 2014. Vol. 65. No. 5. P. 1229–1240. DOI: 10.1093/jxb/ert375

[127]

Huang H, Ullah F, Zhou DX, et al. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. DOI: 10.3389/fpls.2019.00800

[128]

Huang H., Ullah F., Zhou D.X., et al. Mechanisms of ROS regulation of plant development and stress responses // Front Plant Sci. 2019. Vol. 10. P. 800. DOI: 10.3389/fpls.2019.00800

[129]

Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384–390. DOI: 10.1104/pp.106.078295

[130]

Van Breusegem F., Dat J.F. Reactive oxygen species in plant cell death // Plant Physiol. 2006. Vol. 141. No. 2. P. 384–390. DOI: 10.1104/pp.106.078295

[131]

Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abio¬tic stress-induced programmed cell death in plants. Front Plant Sci. 2015;6:69. DOI: 10.3389/fpls.2015.00069

[132]

Petrov V., Hille J., Mueller-Roeber B., Gechev T.S. ROS-mediated abiotic stress-induced programmed cell death in plants // Front Plant Sci. 2015. Vol. 6. P. 69. DOI: 10.3389/fpls.2015.00069

[133]

Apel K, Hirt H. Reactive Oxygen Species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399. DOI: 10.1146/annurev.arplant.55.031903.141701

[134]

Apel K., Hirt H. Reactive Oxygen Species: Metabolism, oxidative stress, and signal transduction // Annu Rev Plant Biol. 2004. Vol. 55. P. 373–399. DOI: 10.1146/annurev.arplant.55.031903.141701

[135]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10): 490–498. DOI: 10.1016/j.tplants.2004.08.009

[136]

Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants // Trends Plant Sci. 2004. Vol. 9. No. 10. P. 490–498. DOI: 10.1016/j.tplants.2004.08.009

[137]

Vandenabeele S, Vanderauwera S, Vuylsteke M, et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 2004;39(1):45–58. DOI: 10.1111/j.1365-313X.2004.02105.x

[138]

Vandenabeele S., Vanderauwera S., Vuylsteke M., et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana // Plant J. 2004. Vol. 39. No. 1. P. 45–58. DOI: 10.1111/j.1365-313X.2004.02105.x

[139]

Pnueli L, Liang H, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J. 2003;34(2):187–203. DOI: 10.1046/j.1365-313X.2003.01715.x

[140]

Pnueli L., Liang H., Rozenberg M., Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants // Plant J. 2003. Vol. 34. No. 2. P. 187–203. DOI: 10.1046/j.1365-313X.2003.01715.x

[141]

Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–867. DOI: 10.1111/tpj.13299

[142]

Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination // Plant J. 2017. Vol. 90. No. 5. P. 856–867. DOI: 10.1111/tpj.13299

[143]

Steinhorst L, Kudla J. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol. 2013;163(2):471–485. DOI: 10.1104/pp.113.222950

[144]

Steinhorst L., Kudla J. Calcium and reactive oxygen species rule the waves of signaling // Plant Physiol. 2013. Vol. 163. No. 2. P. 471–485. DOI: 10.1104/pp.113.222950

[145]

Zhang X, Dong FC, Gao JF, Song CP. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res. 2001;11:37–43. DOI: 10.1038/sj.cr.7290064

[146]

Zhang X., Dong F.C., Gao J.F., Song C.P. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure // Cell Res. 2001. Vol. 11. P. 37–43. DOI: 10.1038/sj.cr.7290064

[147]

Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14(1): S131–152. DOI: 10.1105/tpc.001768

[148]

Wang K.L., Li H., Ecker J.R. Ethylene biosynthesis and signaling networks // Plant Cell. 2002. Vol. 14. No. 1. P. S131–152. DOI: 10.1105/tpc.001768

[149]

Ouaked F, Rozhon W, Lecourieux D, Hirt H. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 2003;22(6):1282–1288. DOI: 10.1093/emboj/cdg131

[150]

Ouaked F., Rozhon W., Lecourieux D., Hirt H. A MAPK pathway mediates ethylene signaling in plants // EMBO J. 2003. Vol. 22. No. 6. P. 1282–1288. DOI: 10.1093/emboj/cdg131

[151]

Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–1633. DOI: 10.4161/psb.22455

[152]

Tripathy B.C., Oelmüller R. Reactive oxygen species generation and signaling in plants // Plant Signal Behav. 2012. Vol. 7. No. 12. P. 1621–1633. DOI: 10.4161/psb.22455

[153]

Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:209–236. DOI: 10.1007/978-3-642-00390-5

[154]

Waszczak C., Carmody M., Kangasjärvi J. Reactive oxygen species in plant signaling // Annu Rev Plant Biol. 2018. Vol. 69. P. 209–236. DOI: 10.1007/978-3-642-00390-5

[155]

Mullineaux PM, Baker NR. Oxidative stress: Antagonistic signaling for acclimation or cell death? Plant Physiol. 2010;154(2):521–525. DOI: 10.1104/pp.110.161406

[156]

Mullineaux P.M., Baker N.R. Oxidative stress: Antagonistic signaling for acclimation or cell death? // Plant Physiol. 2010. Vol. 154. No. 2. P. 521–525. DOI: 10.1104/pp.110.161406

[157]

Viola IL, Guttlein LN, Gonzalez DH. Redox modulation of plant developmental regulators from the class I TCP transcription factor family. Plant Physiol. 2013;162(3):1434–1447. DOI: 10.1104/pp.113.216416

[158]

Viola I.L., Guttlein L.N., Gonzalez D.H. Redox modulation of plant developmental regulators from the class I TCP transcription factor family // Plant Physiol. 2013. Vol. 162. No. 3. P. 1434–1447. DOI: 10.1104/pp.113.216416

[159]

Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton. 2012;69(1):1–21. DOI: 10.1002/cm.20538

[160]

Livanos P., Galatis B., Quader H., Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana // Cytoskeleton. 2012. Vol. 69. No. 1. P. 1–21. DOI: 10.1002/cm.20538

[161]

Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and regulation of programmed cell death in plant development. Annu Rev Cell Dev Biol. 2016;32:441–468. DOI: 10.1146/annurev-cellbio-111315-124915

[162]

Daneva A., Gao Z., Van Durme M., Nowack M.K. Functions and regulation of programmed cell death in plant development // Annu Rev Cell Dev Biol. 2016. Vol. 32. P. 441–468. DOI: 10.1146/annurev-cellbio-111315-124915

[163]

Yi J, Moon S, Lee Y-S, et al. Defective Tapetum Cell Death 1 (DTC1) regulates ros levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 2016;170(3):1611–1623. DOI: 10.1104/pp.15.01561

[164]

Yi J., Moon S., Lee Y.-S., et al. Defective Tapetum Cell Death 1 (DTC1) regulates ros levels by binding to metallothionein du¬ring tapetum degeneration // Plant Physiol. 2016. Vol. 170. No. 3. P. 1611–1623. DOI: 10.1104/pp.15.01561

[165]

Ishibashi Y, Aoki N, Kasa S, et al. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front Plant Sci. 2017;8:275. DOI: 10.3389/fpls.2017.00275

[166]

Ishibashi Y., Aoki N., Kasa S., et al. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination // Front Plant Sci. 2017. Vol. 8. P. 275. DOI: 10.3389/fpls.2017.00275

[167]

Bahin E, Bailly C, Sotta B, et al. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ. 2011;34(6):980–993. DOI: 10.1111/j.1365-3040.2011.02298.x

[168]

Bahin E., Bailly C., Sotta B., et al. Crosstalk between reactive oxy¬gen species and hormonal signalling pathways regulates grain dormancy in barley // Plant Cell Environ. 2011. Vol. 34. No. 6. P. 980–993. DOI: 10.1111/j.1365-3040.2011.02298.x

[169]

Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143(4):606–616. DOI: 10.1016/j.cell.2010.10.020

[170]

Tsukagoshi H., Busch W., Benfey P.N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root // Cell. 2010. Vol. 143. No. 4. P. 606–616. DOI: 10.1016/j.cell.2010.10.020

[171]

Zeng J, Dong Z, Wu H, et al. Redox regulation of plant stem cell fate. EMBO J. 2017;36(19):2844–2855. DOI: 10.15252/embj.201695955

[172]

Zeng J., Dong Z., Wu H., et al. Redox regulation of plant stem cell fate // EMBO J. 2017. Vol. 36. No. 19. P. 2844–2855. DOI: 10.15252/embj.201695955

[173]

Mangano S, Denita-Juarez SP, Choi H-S, et al. Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci USA. 2017;114(20):5289–5294. DOI: 10.1073/pnas.1701536114

[174]

Mangano S., Denita-Juarez S.P., Choi H.-S., et al. Molecular link between auxin and ROS-mediated polar growth // Proc Natl Acad Sci USA. 2017. Vol. 114. No. 20. P. 5289–5294. DOI: 10.1073/pnas.1701536114

[175]

Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. Curr Opin Plant Biol. 2016;29:121–128. DOI: 10.1016/j.pbi.2015.11.009

[176]

Schippers J.H., Foyer C.H., van Dongen J.T. Redox regulation in shoot growth, SAM maintenance and flowering // Curr Opin Plant Biol. 2016. Vol. 29. P. 121–128. DOI: 10.1016/j.pbi.2015.11.009

[177]

Quon T, Lampugnani ER, Smyth DR. PETAL LOSS and ROXY1 interact to limit growth within and between sepals but to promote petal initiation in Arabidopsis thaliana. Front Plant Sci. 2017;8:152. DOI: 10.3389/fpls.2017.00152

[178]

Quon T., Lampugnani E.R., Smyth D.R. PETAL LOSS and ROXY1 interact to limit growth within and between sepals but to promote petal initiation in Arabidopsis thaliana // Front Plant Sci. 2017. Vol. 8. P. 152. DOI: 10.3389/fpls.2017.00152

[179]

Lassig R, Gutermuth T, Bey TD, et al. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 2014;78(1):94–106. DOI: 10.1111/tpj.12452

[180]

Lassig R., Gutermuth T., Bey T.D., et al. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth // Plant J. 2014. Vol. 78. No. 1. P. 94–106. DOI: 10.1111/tpj.12452

[181]

Richards SL, Wilkins KA, Swarbreck SM, et al. The hydroxyl radical in plants: From seed to seed. J Exp Bot. 2015;66(1):37–46. DOI: 10.1093/jxb/eru398

[182]

Richards S.L., Wilkins K.A., Swarbreck S.M., et al. The hydroxyl radical in plants: From seed to seed // J Exp Bot. 2015. Vol. 66. No. 1. P. 37–46. DOI: 10.1093/jxb/eru398

[183]

Valerio L, De Meyer M, Penel C, Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry. 2004;65(10):1331–1342. DOI: 10.1016/j.phytochem.2004.04.017

[184]

Valerio L., De Meyer M., Penel C., Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family // Phytochemistry. 2004. Vol. 65. No. 10. P. 1331–1342. DOI: 10.1016/j.phytochem.2004.04.017

[185]

Shigeto J, Itoh Y, Hirao S, et al. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol. 2015;57(4):349–356. DOI: 10.1111/jipb.12334

[186]

Shigeto J., Itoh Y., Hirao S., et al. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem // J Integr Plant Biol. 2015. Vol. 57. No. 4. P. 349–356. DOI: 10.1111/jipb.12334

[187]

Laitinen T, Morreel K, Delhomme N, et al. A key role for apoplastic H2O2 in norway spruce phenolic metabolism. Plant Physiol. 2017;174(3):1449–1475. DOI: 10.1104/pp.17.00085

[188]

Laitinen T., Morreel K., Delhomme N., et al. A key role for apoplastic H2O2 in norway spruce phenolic metabolism // Plant Physiol. 2017. Vol. 174. No. 3. P. 1449–1475. DOI: 10.1104/pp.17.00085

[189]

Lee Y, Rubio MC, Alassimone J, Geldner N. A mechanism for localized lignin deposition in the endodermis. Cell. 2013;153(2):402–412. DOI: 10.1016/j.cell.2013.02.045

[190]

Lee Y., Rubio M.C., Alassimone J., Geldner N. A mechanism for localized lignin deposition in the endodermis // Cell. 2013. Vol. 153. No. 2. P. 402–412. DOI: 10.1016/j.cell.2013.02.045

[191]

Xiong J, Yang Y, Fu G, Tao L. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytol. 2015;206(1): 118–126. DOI: 10.1111/nph.13285

[192]

Xiong J., Yang Y., Fu G., Tao L. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips // New Phytol. 2015. Vol. 206. No. 1. P. 118–126. DOI: 10.1111/nph.13285

[193]

Denness L, McKenna JF, Segonzac C, et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156(3):1364–1374. DOI: 10.1104/pp.111.175737

[194]

Denness L., McKenna J.F., Segonzac C., et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis // Plant Physiol. 2011. Vol. 156. No. 3. P. 1364–1374. DOI: 10.1104/pp.111.175737

[195]

Rosenwasser S, Rot I, Sollner E, et al. Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol. 2011;156(1):185–201. DOI: 10.1104/pp.110.169797

[196]

Rosenwasser S., Rot I., Sollner E., et al. Organelles contribute differentially to reactive oxygen species-related events during extended darkness // Plant Physiol. 2011. Vol. 156. No. 1. P. 185–201. DOI: 10.1104/pp.110.169797

[197]

Zimmermann P, Heinlein C, Orendi G, Zentgraf U. Sene¬scence-specific regulation of catalases in Arabidopsis tha¬liana (L.) Heynh. Plant Cell Environ. 2006;29(6):1049–1060. DOI: 10.1111/j.1365-3040.2005.01459.x

[198]

Zimmermann P., Heinlein C., Orendi G., Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh // Plant Cell Environ. 2006. Vol. 29. No. 6. P. 1049–1060. DOI: 10.1111/j.1365–3040.2005.01459.x

[199]

Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145(15): dev164376. DOI: 10.1242/dev.164376

[200]

Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. Vol. 145. No. 15. ID dev164376. DOI: 10.1242/dev.164376

Funding

Российский фонд фундаментальных исследованийRussian Foundation for basic research(12-04-01029)

Российский фонд фундаментальных исследованийRussian Foundation for basic research(18-04-00157)

AI Summary AI Mindmap
PDF (1620KB)

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/