Genotoxic effect of restraint and stress pheromone on somatic and germ cells of mouse males Mus musculus L.

Veronika D. Shcherbinina , Marina V. Petrova , Timofey S. Glinin , Eugene V. Daev

Ecological Genetics ›› 2021, Vol. 19 ›› Issue (2) : 169 -179.

PDF (390KB)
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (2) : 169 -179. DOI: 10.17816/ecogen65208
Genetic toxicology
research-article

Genotoxic effect of restraint and stress pheromone on somatic and germ cells of mouse males Mus musculus L.

Author information +
History +
PDF (390KB)

Abstract

BACKGROUND: Different stressors affect the genome integrity, but the mechanisms of such action are underexplored.

MATERIALS AND METHODS: Bone marrow and testicular cells of CBA and CD-1 mouse males were used to estimate their genome integrity after stressor action by the comet assay.

RESULTS: It is shown here that restraint and 2,5-dimethylpyrazine both increase damaged cell frequency in bone marrow as well as in testes of mouse males. For the first time the effect of immobilization and 2,5-dimethylpyrazine in testicular cells is demonstrated using the comet assay. Both stressors have similar effects in cells of both tissues analyzed.

CONCLUSION: Mechanisms of the effects and possible role in microevolution are under discussion.

Keywords

stress / mouse / genome / bone marrow / testes / comet assay / restraint / pheromone / 2,5-dimethylpyrazine

Cite this article

Download citation ▾
Veronika D. Shcherbinina, Marina V. Petrova, Timofey S. Glinin, Eugene V. Daev. Genotoxic effect of restraint and stress pheromone on somatic and germ cells of mouse males Mus musculus L.. Ecological Genetics, 2021, 19(2): 169-179 DOI:10.17816/ecogen65208

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selye H. The physiology and pathology of exposure to stress. Montreal: Acta Med. Publ., 1950. 203 p.

[2]

Chitty D. Population processes in the vole and their relevance to general theory. Can J Zool. 1960;38(1),99–113. DOI: 10.1139/z60-011

[3]

Chitty D. Population processes in the vole and their relevance to general theory // Can J Zool. 1960. Vol. 38. No. 1. P. 99–113. DOI: 10.1139/z60-011

[4]

Hoffmann AA, Hercus MJ. Environmental stress as an evolutionary force. BioScience. 2000;50(3):217. DOI: 10.1641/0006-3568(2000)050[0217: ESAAEF]2.3.CO;2

[5]

Hoffmann A.A., Hercus M.J. Environmental stress as an evolutionary force // BioScience. 2000. Vol. 50. No. 3. P. 217. DOI: 10.1641/0006-3568(2000)050[0217:ESAAEF]2.3.CO;2

[6]

Daev EV. Genetic aspects of stress neuroendocrinology. In: Neuroendocrinology research developments. Penkava NS, Haight LR, editors. NY: Nova Science Publishers, 2010. 119–133 p.

[7]

Daev E.V. Genetic aspects of stress neuroendocrinology. In: Neuroendocrinology research developments. Penkava N.S., Haight L.R., editors. NY: Nova Science Publishers, 2010. P. 119–133.

[8]

Zhou P, Lian HY, Cui W, et al. Maternal-restraint stress increases oocyte aneuploidy by impairing metaphase I spindle assembly and reducing spindle assembly checkpoint proteins in mice. Biol Reprod. 2012;86(3):83. DOI: 10.1095/biolreprod.111.095281

[9]

Zhou P., Lian H.Y., Cui W., et al. Maternal-restraint stress increases oocyte aneuploidy by impairing metaphase I spindle assembly and reducing spindle assembly checkpoint proteins in mice // Biol Reprod. 2012. Vol. 86. No. 3. P. 83. DOI: 10.1095/biolreprod.111.095281

[10]

Selye H. A syndrome produced by diverse nocuous agents. 1936. J Neuropsychiatry Clin Neurosci. 1998;10(2):230–231. DOI: 10.1176/jnp.10.2.230a

[11]

Selye H. A syndrome produced by diverse nocuous agents. 1936 // J Neuropsychiatry Clin Neurosci. 1998. Vol. 10. No. 2. P. 230–231. DOI: 10.1176/jnp.10.2.230a

[12]

Owusu-Ansah E, Perrimon N. Stress signaling between organs in metazoa. Annu Rev Cell Dev Biol. 2015;31:497–522. DOI: 10.1146/annurev-cellbio-100814-125523

[13]

Owusu-Ansah E., Perrimon N. Stress signaling between organs in metazoan // Annu Rev Cell Dev Biol. 2015. Vol. 31. P. 497–522. DOI: 10.1146/annurev-cellbio-100814-125523

[14]

Daev EV. Stress, chemocommunication, and the physiological hypothesis of mutation. Russian Journal of Genetics. 2007;43(10):1082–1092. (In Russ.) DOI: 10.1134/s102279540710002x

[15]

Даев Е.В. О стрессе, хемокоммуникации у мышей и физиологической гипотезе мутационного процесса // Генетика. 2007. Т. 43, № 10. С. 1082–1092. DOI: 10.1134/s102279540710002x

[16]

Dayas CV, Buller KM, Crane JW, et al. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci. 2001;14(7):1143–1152. DOI: 10.1046/j.0953-816x.2001.01733.x

[17]

Dayas C.V., Buller K.M., Crane J.W., et al. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups // Eur J Neurosci. 2001. Vol. 14. No. 7. P. 1143–1152. DOI: 10.1046/j.0953-816x.2001.01733.x

[18]

Bowers SL, Bilbo SD, Dhabhar FS, Nelson RJ. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav Immun. 2008;22(1):105–113. DOI: 10.1016/j.bbi.2007.07.012

[19]

Bowers S.L., Bilbo S.D., Dhabhar F.S., Nelson R.J. Stressor-specific alterations in corticosterone and immune responses in mice // Brain Behav Immun. 2008. Vol. 22. No. 1. P. 105–113. DOI: 10.1016/j.bbi.2007.07.012

[20]

Novotny M, Jemiolo B, Harvey S, et al. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science. 1986;231(4739):722–725. DOI: 10.1126/science.3945805

[21]

Novotny M., Jemiolo B., Harvey S., et al. Adrenal-mediated endogenous metabolites inhibit puberty in female mice // Science. 1986. Vol. 231. No. 4739. P. 722–725. DOI: 10.1126/science.3945805

[22]

Koyama S. Primer effects by conspecific odors in house mice: a new perspective in the study of primer effects on reproductive activities. Horm Behav. 2004;46(3):303–310. DOI: 10.1016/j.yhbeh.2004.03.002

[23]

Koyama S. Primer effects by conspecific odors in house mice: a new perspective in the study of primer effects on reproductive activities // Horm Behav. 2004. Vol. 46. No. 3. P. 303–310. DOI: 10.1016/j.yhbeh.2004.03.002

[24]

Daev EV, Vorob’ev KV, Shustova TI, et al. Genotipspetsificheskie izmeneniya nekotorykh funktsional’nykh pokazatelei immunokompetentnykh kletok u samtsov laboratornykh myshei v usloviyakh feromonal’nogo stressa. Russian Journal of Genetics. 2000;36(8):872–876.

[25]

Даев Е.В., Воробьев К.В., Шустова Т.И., и др. Генотипоспецифические изменения некоторых функциональных показателей иммунокомпетентных клеток у самцов лабораторных мышей в условиях феромонального стресса // Генетика. 2000. Т. 36, № 8. С. 1055–1060.

[26]

Glinin TS. Puti stabilizatsii i destabilizatsii genoma kletok kostnogo mozga myshi pri deistvii ol’faktornykh khemosignalov [dissertation]. Saint Petersburg: 2018. 175 p. (In Russ.)

[27]

Глинин Т.С. Пути стабилизации и дестабилизации генома клеток костного мозга мыши при действии ольфакторных хемосигналов: дис. … канд. биол. наук. СПб., 2018. 175 с.

[28]

Dyuzhikova NA, Daev EV. Genome and stress-reaction in animals and humans. Ecological genetics. 2018;16(1):4–26. (In Russ.) DOI: 10.17816/ecogen1614-26

[29]

Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. 2018. Т. 16, № 1. С. 4–26. DOI: 10.17816/ecogen1614-26

[30]

Dobrzyńska MM. The effects in mice of combined treatments to X-rays and antineoplastic drugs in the Comet assay. Toxicology. 2005;207(2):331–338. DOI: 10.1016/j.tox.2004.10.002

[31]

Dobrzyńska M.M. The effects in mice of combined treatments to X-rays and antineoplastic drugs in the Comet assay // Toxicology. 2005. Vol. 207. No. 2. P. 331–338. DOI: 10.1016/j.tox.2004.10.002

[32]

Higashimoto M, Isoyama N, Ishibashi S, et al. Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress. J Med Invest. 2013;60(3–4):240–248. DOI: 10.2152/jmi.60.240

[33]

Higashimoto M., Isoyama N., Ishibashi S., et al. Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress // J Med Invest. 2013. Vol. 60. No. 3–4. P. 240–248. DOI: 10.2152/jmi.60.240

[34]

Durnev AD, Zhanataev AK, Anisina EA, et al. Primenenie metoda shchelochnogo gel’-ehlektroforeza izolirovannykh kletok dlya otsenki genotoksicheskikh svoistv prirodnykh i sinteticheskikh soedinenii: metodicheskie rekomendatsii. Moscow: 2006. 27 p. (In Russ.)

[35]

Дурнев А.Д., Жанатаев А.К., Анисина Е.А., и др. Применение метода щелочного гель-электрофореза изолированных клеток для оценки генотоксических свойств природных и синтетических соединений: методические рекомендации: М.: 2006. 27 с.

[36]

Fischman HK, Pero RW, Kelly DD. Psychogenic stress induces chromosomal and DNA damage. Int J Neurosci. 1996;84(1–4): 219–227. DOI: 10.3109/00207459608987267

[37]

Fischman H.K., Pero R.W., Kelly D.D. Psychogenic stress induces chromosomal and DNA damage // Int J Neurosci. 1996. Vol. 84. No. 1–4. P. 219–227. DOI: 10.3109/00207459608987267.

[38]

El-Refaiy AI, El-Desouki NI, Abdel-Azeem H, Elbaely MM. Cytogenetical study on the Effect of Immobilization Stress on Albino Rat and the Ameliorative Role of Diazepam. Current Science International. 2017;6(4):900–907.

[39]

El-Refaiy A.I., El-Desouki N.I., Abdel-Azeem H., Elbaely M.M. Cytogenetical study on the Effect of Immobilization Stress on Albino Rat and the Ameliorative Role of Diazepam // Current Science International. 2017. Vol. 6. No. 4. P. 900–907.

[40]

Malvandi AM, Haddad F, Moghimi A. Acute restraint stress increases the frequency of vinblastine-induced micronuclei in mouse bone marrow cells. Stress. 2010;13(3):276–280. DOI: 10.3109/10253890903296710

[41]

Malvandi A.M., Haddad F., Moghimi A. Acute restraint stress increases the frequency of vinblastine-induced micronuclei in mouse bone marrow cells // Stress. 2010. Vol. 13. No. 3. P. 276–280. DOI: 10.3109/10253890903296710

[42]

Hara MR, Kovacs JJ, Whalen EJ, et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature. 2011;477(7364):349–353. DOI: 10.1038/nature10368

[43]

Hara M.R., Kovacs J.J., Whalen E.J., et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1 // Nature. 2011. Vol. 477. No. 7364. P. 349–353. DOI: 10.1038/nature10368

[44]

Mikhailov VM, Vezhenkova IV. Double-strand breaks of DNA of C57BL and mdx mouse cardiomyocytes after dynamic stress. Cell Tiss Biol. 2007;1:328–333. DOI: 10.1134/S1990519X07040049

[45]

Mikhailov V.M., Vezhenkova I.V. Double-strand breaks of DNA of C57BL and mdx mouse cardiomyocytes after dynamic stress // Cell Tiss Biol. 2007. Vol. 1. P. 328–333. DOI: 10.1134/S1990519X07040049

[46]

Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1–32. DOI: 10.1146/annurev-genet-111212-133232

[47]

Aguilera A., García-Muse T. Causes of genome instability // Annu Rev Genet. 2013. Vol. 47. P. 1–32. DOI: 10.1146/annurev-genet-111212-133232

[48]

Daev EV, Dukelskaya AV. The female pheromone 2,5-dimethylpyrazine induces sperm-head abnormalities in male CBA mice. Russian Journal of Genetics. 2003;39(7):811–815. DOI: 10.1023/A:1024709321888

[49]

Даев Е.В., Дукельская А.В. Индукция аномалий спермиевых головок у половозрелых самцов мышей линии СВА феромоном самок мышей-2,5-диметилпиразином // Генетика. 2003. Т. 39, № 7. С. 969–974. DOI: 10.1023/A:1024709321888

[50]

Daev EV, Dukelskaya AV. Induction of meiotic disturbances in spermatocytes i by pheromones as an inhibiting mechanism of male reproductive function in house mice. Cell and Tissue Biology. 2005;47(6):505–509. (In Russ.)

[51]

Даев Е.В., Дукельская А.В. Феромональная индукция мейотических нарушений в сперматоцитах I как механизм угнетения репродуктивной функции самцов у домовой мыши // Цитология. 2005. Т. 47, № 6. С. 505–509.

[52]

Daev EV, Petrova MV, Onopa LS, et al. DNA damage in bone marrow cells of mouse males in vivo after exposure to the pheromone: Comet assay. Russian Journal of Genetics. 2017;53(10): 1105–1112. (In Russ.) DOI: 10.1134/s1022795417100027

[53]

Даев Е.В., Петрова М.В., Онопа Л.С., и др. Повреждение ДНК в клетках костного мозга самцов мышей in vivo после феромонального воздействия методом ДНК-комет // Генетика. 2017. Т. 53, № 10. C. 1105–1112. DOI: 10.1134/s1022795417100027

[54]

Jemiolo B, Novotny M. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol Behav. 1994;55(3):519–522. DOI: 10.1016/0031-9384(94)90110-4

[55]

Jemiolo B., Novotny M. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin // Physiol Behav. 1994. Vol. 55. No. 3. P. 519–522. DOI: 10.1016/0031-9384(94)90110-4

[56]

Borodin PM, Belyaev DK. Vliyanie stressa na chastotu krossingovera vo 2-i khromosome domovoi myshi. Doklady AN SSSR. 1980;253(3):727–729. (In Russ.)

[57]

Бородин П.М., Беляев Д.К. Влияние стресса на частоту кроссинговера во 2-й хромосоме домовой мыши // Доклады АН СССР. 1980. Т. 253, № 3. С. 727–729.

[58]

Borodin PM, Belyaev DK. Vliyanie ehmotsional’nogo stressa na chastotu rekombinatsii v 1-i khromosome domovoi myshi. Doklady AN SSSR. 1986;286(3):726–728. (In Russ.)

[59]

Бородин П.М., Беляев Д.К. Влияние эмоционального стресса на частоту рекомбинаций в 1-й хромосоме домовой мыши // Доклады АН СССР. 1986. Т. 286, № 3. С. 726–728.

[60]

Lobashev ME. Fiziologicheskaya (paranekroticheyskaya) gipoteza mutatsionnogo protsessa. Pushkin Leningrad state university journal. 1947;8:10–29. (In Russ.)

[61]

Лобашев М.Е. Физиологическая (паранекротическая) гипотеза мутационного процесса // Вестник Ленинградского университета. 1947. № 8. С. 10–29

[62]

Markel AL. Behavior, stress, and evolution. Filosofiya nauki. 2013;56(1):140–152. (In Russ.)

[63]

Маркель А.Л. Поведение, стресс и эволюция // Философия науки. 2013. Т. 56, № 1. С. 140–152.

[64]

Hodes GE, Pfau ML, Leboeuf M, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. PNAS USA. 2014;111(45):16136–16141. DOI: 10.1073/pnas.1415191111

[65]

Hodes G.E., Pfau M.L., Leboeuf M., et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress // PNAS USA. 2014. Vol. 111. No. 45. P. 16136–16141. DOI: 10.1073/pnas.1415191111

[66]

Jiang W, Li Y, Wei W, et al. Spleen contributes to restraint stress induced hepatocellular carcinoma progression. Int Immunopharmacol. 2020;83:106420. DOI: 10.1016/j.intimp.2020.106420

[67]

Jiang W., Li Y., Wei W., et al. Spleen contributes to restraint stress induced hepatocellular carcinoma progression // Int Immunopharmacol. 2020. Vol. 83. 106420. DOI: 10.1016/j.intimp.2020.106420

[68]

Acevedo-Whitehouse K, Duffus AL. Effects of environmental change on wildlife health. Philos Trans R Soc Lond B Biol Sci. 2009;364(1534):3429–3438. DOI: 10.1098/rstb.2009.0128

[69]

Acevedo-Whitehouse K., Duffus A.L. Effects of environmental change on wildlife health // Philos Trans R Soc Lond B Biol Sci. 2009. Vol. 364. No. 1534. P. 3429–3438. DOI: 10.1098/rstb.2009.0128

[70]

Brown RE. Mammalian Social Odors: A Critical Review. Adv Study Behav. 1979;10:104–143. DOI: 10.1016/S0065-3454(08)60094-7

[71]

Brown R.E. Mammalian Social Odors: A Critical Review // Adv Study Behav. 1979. Vol. 10. P. 104–143. DOI: 10.1016/S0065-3454(08)60094-7

[72]

Brennan PA, Kendrick KM. Mammalian social odours: attraction and individual recognition. Philos Trans R Soc Lond B Biol Sci. 2006;361(1476):2061–2078. DOI: 10.1098/rstb.2006.1931

[73]

Brennan P.A., Kendrick K.M. Mammalian social odours: attraction and individual recognition // Philos Trans R Soc Lond B Biol Sci. 2006. Vol. 361. No. 1476. P. 2061–2078. DOI: 10.1098/rstb.2006.1931

AI Summary AI Mindmap
PDF (390KB)

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/