Whole genome approach in conservation biology and its perspectives

Sergei F. Kliver

Ecological Genetics ›› 2021, Vol. 19 ›› Issue (3) : 281 -298.

PDF (2244KB)
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (3) : 281 -298. DOI: 10.17816/ecogen65152
Methodology in ecological genetics
research-article

Whole genome approach in conservation biology and its perspectives

Author information +
History +
PDF (2244KB)

Abstract

Conservation biology aims to maintain biological diversity and to defend species from extinction. The number of endangered species is constantly increasing from year to year, reflecting both a deteriorating situation and an increasing number of studied species. In order to obtain a reliable assessment of the status and conservation planning of threatened species, not only an estimate of current total abundance, but also data on population structure, demographic history, and genetic diversity are needed. The development of new approaches and lower costs of sequencing have made it possible to solve these problems at a level previously inaccessible and have led to the formation of conservation genomics. This review discusses the opportunities and prospects offered by the use of whole genome sequencing in conservation biology, features of sample gathering for sequencing, as well as some features of planning whole genome studies. In addition, emphasis is placed on the importance of the formation of open biobanks of samples and cell cultures at the national level.

Keywords

conservation biology / genomics / sequencing / genetic diversity

Cite this article

Download citation ▾
Sergei F. Kliver. Whole genome approach in conservation biology and its perspectives. Ecological Genetics, 2021, 19(3): 281-298 DOI:10.17816/ecogen65152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Soulé ME. What Is Conservation Biology? BioScience. 1985;35(11):727–734. DOI: 10.2307/1310054

[2]

Soulé M.E. What Is Conservation Biology? // BioScience. 1985. Vol. 35. No. 11. P. 727–734. DOI: 10.2307/1310054

[3]

ucnredlist.org [Internet]. The IUCN Red List of Threatened Species. Version 2020–2. 2020 [cited 2020 Aug 10]. Available from: https://www.iucnredlist.org

[4]

Iucnredlist.org [Internet]. The IUCN Red List of Threatened Species. Version 2020–2. 2020 [дата обращения 10.08.2020]. Доступ по ссылке: https://www.iucnredlist.org

[5]

Butchart SHM, Akçakaya HR, Chanson J, et al. Improvements to the Red List Index. PLOS ONE. 2007;2(1): e140. DOI: 10.1371/journal.pone.0000140

[6]

Butchart S.H.M., Akçakaya H.R., Chanson J., et al. Improvements to the Red List Index // PLOS ONE. 2007. Vol. 2. No. 1. P. e140. DOI: 10.1371/journal.pone.0000140

[7]

Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA. 2020;117(24):13596–13602. DOI: 10.1073/pnas.1922686117

[8]

Ceballos G., Ehrlich P.R., Raven P.H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction // Proc Natl Acad Sci USA. 2020. Vol. 117. No. 24. P. 13596–13602. DOI: 10.1073/pnas.1922686117

[9]

Frankham R. Conservation Genetics. Annu Rev Genet. 1995;29(1):305–327. DOI: 10.1146/annurev.ge.29.120195.001513

[10]

Frankham R. Conservation Genetics // Annu Rev Genet. 1995. Vol. 29. No. 1. P. 305–327. DOI: 10.1146/annurev.ge.29.120195.001513

[11]

Luikart G, England PR, Tallmon D, et al. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4(12):981–994. DOI: 10.1038/nrg1226

[12]

Luikart G., England P.R., Tallmon D., et al. The power and promise of population genomics: from genotyping to genome typing // Nat Rev Genet. 2003. Vol. 4. No. 12. P. 981–994. DOI: 10.1038/nrg1226

[13]

Miller W, Hayes VM, Ratan A, et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). PNAS. 2011;108(30):12348–12353. DOI: 10.1073/pnas.1102838108

[14]

Miller W., Hayes V.M., Ratan A., et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil) // PNAS. 2011. Vol. 108. No. 30. P. 12348–12353. DOI: 10.1073/pnas.1102838108

[15]

Waterson RH, Lander ES, Wilson RK, et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87. DOI: 10.1038/nature04072

[16]

Waterson R.H., Lander E.S., Wilson R.K., et al. Initial sequence of the chimpanzee genome and comparison with the human genome // Nature. 2005. Vol. 437. No. 7055. P. 69–87. DOI: 10.1038/nature04072

[17]

Kirkness EF, Bafna V, Halpern AL, et al. The Dog Genome: Survey Sequencing and Comparative Analysis. Science. 2003;301(5641):1898–903. DOI: 10.1126/science.1086432

[18]

Kirkness E.F., Bafna V., Halpern A.L., et al. The Dog Genome: Survey Sequencing and Comparative Analysis // Science. 2003. Vol. 301. No. 5641. P. 1898–903. DOI: 10.1126/science.1086432

[19]

Zimin AV, Marçais G, Puiu D, et al. The MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–2977. DOI: 10.1093/bioinformatics/btt476

[20]

Zimin A.V., Marçais G., Puiu D., et al. The MaSuRCA genome assembler // Bioinformatics. 2013. Vol. 29. No. 21. P. 2669–2677. DOI: 10.1093/bioinformatics/btt476

[21]

Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–317. DOI: 10.1038/nature08696

[22]

Li R., Fan W., Tian G., et al. The sequence and de novo assembly of the giant panda genome // Nature. 2010. Vol. 463. No. 7279. P. 311–317.

[23]

Robinson JA, Räikkönen J, Vucetich LM, et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv. 2019;5(5): eaau0757. DOI: 10.1126/sciadv.aau0757

[24]

Robinson J.A., Räikkönen J., Vucetich L.M., et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction // Sci Adv. 2019. Vol. 5. No. 5. ID eaau0757. DOI: 10.1126/sciadv.aau0757

[25]

Nuijten RJM, Bosse M, Crooijmans RPMA, et al. The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons). Int J Genomics. 2016;2016:1–9. DOI: 10.1155/2016/5613862

[26]

Nuijten R.J.M., Bosse M., Crooijmans R.P.M.A., et al. The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons) // Int J Genomics. 2016. Vol. 2016. P. 1–9. DOI: 10.1155/2016/5613862

[27]

Dobrynin P, Liu S, Tamazian G, et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015;16(1):277. DOI: 10.1186/s13059-015-0837-4

[28]

Dobrynin P., Liu S., Tamazian G., et al. Genomic legacy of the African cheetah, Acinonyx jubatus // Genome Biol. 2015. Vol. 16. No. 1. P. 277. DOI: 10.1186/s13059-015-0837-4

[29]

Abascal F, Corvelo A, Cruz F, et al. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol. 2016;17(1):251. DOI: 10.1186/s13059-016-1090-1

[30]

Abascal F., Corvelo A., Cruz F., et al. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx // Genome Biol. 2016. Vol. 17. No. 1. P. 251. DOI: 10.1186/s13059-016-1090-1

[31]

Beichman AC, Koepfli K-P, Li G, et al. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Kelley J, editor. Mol Biol Evol. 2019; msz101. DOI: 10.1093/molbev/msz101

[32]

Beichman A.C., Koepfli K-P., Li G., et al. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Kelley J, editor // Mol Biol Evol. 2019. ID msz101. DOI: 10.1093/molbev/msz101

[33]

Jones SJ, Haulena M, Taylor GA, et al. The Genome of the Northern Sea Otter (Enhydra lutris kenyoni). Genes. 2017;8(12):379. DOI: 10.3390/genes8120379

[34]

Jones S.J., Haulena M., Taylor G.A., et al. The Genome of the Northern Sea Otter (Enhydra lutris kenyoni) // Genes. 2017. Vol. 8. No. 12. P. 379. DOI: 10.3390/genes8120379

[35]

Kolchanova S, Kliver S, Komissarov A, et al. Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation. Genes. 2019;10(1):54. DOI: 10.3390/genes10010054

[36]

Kolchanova S., Kliver S., Komissarov A., et al. Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation // Genes. 2019. Vol. 10. No. 1. P. 54. DOI: 10.3390/genes10010054

[37]

Feng S, Fang Q, Barnett R, et al. The Genomic Footprints of the Fall and Recovery of the Crested Ibis. Curr Biol. 2019;29(2):340–349.e7. DOI: 10.1016/j.cub.2018.12.008

[38]

Feng S., Fang Q., Barnett R., et al. The Genomic Footprints of the Fall and Recovery of the Crested Ibis // Curr Biol. 2019. Vol. 29. No. 2. P. 340–349.e7. DOI: 10.1016/j.cub.2018.12.008

[39]

de Manuel M, Barnett R, Sandoval-Velasco M, et al. The evolutionary history of extinct and living lions. Proc Natl Acad Sci USA. 2020;117(20):10927–10934. DOI: 10.1073/pnas.1919423117

[40]

de Manuel M., Barnett R., Sandoval-Velasco M., et al. The evolutionary history of extinct and living lions // Proc Natl Acad Sci USA. 2020. Vol. 117. No. 20. P. 10927–10934.

[41]

Humble E, Dobrynin P, Senn H, et al. Chromosomal-level genome assembly of the scimitar-horned oryx: Insights into diversity and demography of a species extinct in the wild. Mol Ecol Resour. 2020;1755–0998.13181. DOI: 10.1101/867341

[42]

Humble E., Dobrynin P., Senn H., et al. Chromosomal-level genome assembly of the scimitar-horned oryx: Insights into diversity and demography of a species extinct in the wild // Mol Ecol Resour. 2020. ID1755-0998.13181. DOI: 10.1111/1755-0998.13181

[43]

Cortes-Rodriguez N, Campana M, Berry L, et al. Population Genomics and Structure of the Critically Endangered Mariana Crow (Corvus kubaryi). Genes. 2019;10(3):187. DOI: 10.3390/genes10030187

[44]

Cortes-Rodriguez N., Campana M., Berry L., et al. Population Genomics and Structure of the Critically Endangered Mariana Crow (Corvus kubaryi) // Genes. 2019. Vol. 10. No. 3. ID187. DOI: 10.3390/genes10030187

[45]

Gooley RM, Tamazian G, Castañeda-Rico S, et al. Comparison of genomic diversity and structure of sable antelope (Hippotragus niger) in zoos, conservation centers, and private ranches in North America. Evol Appl. 2020;13(8):2143–2154. DOI: 10.1111/eva.12976

[46]

Gooley R.M., Tamazian G., Castañeda-Rico S., et al. Comparison of genomic diversity and structure of sable antelope (Hippotragus niger) in zoos, conservation centers, and private ranches in North America // Evol Appl. 2020. Vol. 13. No. 8. P. 2143–2154. DOI: 10.1111/eva.12976

[47]

Koepfli K-P, Tamazian G, Wildt D, et al. Whole Genome Sequencing and Re-sequencing of the Sable Antelope (Hippotragus niger): A Resource for Monitoring Diversity in ex Situ and in Situ Populations. G3. 2019;9(6):1785–1793. DOI: 10.1534/g3.119.400084

[48]

Koepfli K.-P., Tamazian G., Wildt D., et al. Whole Genome Sequencing and Re-sequencing of the Sable Antelope (Hippotragus niger): A Resource for Monitoring Diversity in ex Situ and in Situ Populations // G3. 2019. Vol. 9. No. 6. P. 1785–1793. DOI: 10.1534/g3.119.400084

[49]

Yang J, Wariss HM, Tao L, et al. De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. Gigascience. 2019;8(7): giz085. DOI: 10.1093/gigascience/giz085

[50]

Yang J., Wariss H.M., Tao L., et al. De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China // Gigascience. 2019. Vol. 8. No. 7. ID giz085. DOI: 10.1093/gigascience/giz085

[51]

Sutton JT, Helmkampf M, Steiner CC, et al. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii’s Last Remaining Crow Species. Genes. 2018;9(8):393. DOI: 10.3390/genes9080393

[52]

Sutton J.T., Helmkampf M., Steiner C.C., et al. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii’s Last Remaining Crow Species // Genes. 2018. Vol. 9. No. 8. ID393. DOI: 10.3390/genes9080393

[53]

van der Valk T, Díez-del-Molino D, Marques-Bonet T, et al. Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas. Curr Biol. 2019;29(1):165–170.e6. DOI: 10.1016/j.cub.2018.11.055

[54]

van der Valk T., Díez-del-Molino D., Marques-Bonet T., et al. Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas // Curr Biol. 2019. Vol. 29. No. 1. P. 165–170.e6. DOI: 10.1016/j.cub.2018.11.055

[55]

Yi L, Dalai M, Su R, et al. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics. 2020;21(1):108. DOI: 10.1186/s12864-020-6495-2

[56]

Yi L., Dalai M., Su R., et al. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features // BMC Genomics. 2020. Vol. 21. No. 1. P. 108. DOI: 10.1186/s12864-020-6495-2

[57]

Mays HL, Hung C-M, Shaner P-J, et al. Genomic Analysis of Demographic History and Ecological Niche Modeling in the Endangered Sumatran Rhinoceros Dicerorhinus sumatrensis. Curr Biol. 2018;28(1):70–76.e4. DOI: 10.1016/j.cub.2017.11.021

[58]

Mays H.L., Hung C.-M., Shaner P.-J., et al. Genomic Analysis of Demographic History and Ecological Niche Modeling in the Endangered Sumatran Rhinoceros Dicerorhinus sumatrensis // Curr Biol. 2018. Vol. 28. No. 1. P. 70–76.e4. DOI: 10.1016/j.cub.2017.11.021

[59]

Rogers RL, Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel Island. Barsh GS, editor. PLoS Genet. 2017;13(3): e1006601. DOI: 10.1371/journal.pgen.1006601

[60]

Rogers R.L., Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel Island. Barsh G.S., editor // PLoS Genet. 2017. Vol. 13. No. 3. ID e1006601. DOI: 10.1371/journal.pgen.1006601

[61]

Gao J, Li Q, Wang Z, et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience. 2017;6(7): gix04. DOI: 10.1093/gigascience/gix041

[62]

Gao J., Li Q., Wang Z., et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus // Gigascience. 2017. Vol. 6. No. 7. ID: gix04. DOI: 10.1093/gigascience/gix041

[63]

Choo SW, Rayko M, Tan TK, et al. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res. 2016;26(10):1312–1322. DOI: 10.1101/gr.203521.115

[64]

Choo S.W., Rayko M., Tan T.K., et al. Pangolin genomes and the evolution of mammalian scales and immunity // Genome Res. 2016. Vol. 26. No. 10. P. 1312–1322. DOI: 10.1101/gr.203521.115

[65]

McManus KF, Kelley JL, Song S, et al. Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data. Mol Biol Evol. 2015;32(3):600–612. DOI: 10.1093/molbev/msu394

[66]

McManus K.F., Kelley J.L., Song S., et al. Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data // Mol Biol Evol. 2015. Vol. 32. No. 3. P. 600–612. DOI: 10.1093/molbev/msu394

[67]

Li S, Li B, Cheng C, et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol. 2014;15(12):557. DOI: 10.1186/s13059-014-0557-1

[68]

Li S., Li B., Cheng C., et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species // Genome Biol. 2014. Vol. 15. No. 12. P. 557. DOI: 10.1186/s13059-014-0557-1

[69]

Fan Z, Zhao G, Li P, et al. Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History. Mol Biol Evol. 2014;31(6):1475–1489. DOI: 10.1093/molbev/msu104

[70]

Fan Z., Zhao G., Li P., et al. Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History // Mol Biol Evol. 2014. Vol. 31. No. 6. P. 1475–1489. DOI: 10.1093/molbev/msu104

[71]

Cho YS, Hu L, Hou H, et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 2013;4(1):2433. DOI: 10.1038/ncomms3433

[72]

Cho Y.S., Hu L., Hou H., et al. The tiger genome and comparative analysis with lion and snow leopard genomes // Nat Commun. 2013. Vol. 4. No. 1. ID2433 DOI: 10.1038/ncomms3433

[73]

Weisenfeld NI, Kumar V, Shah P, et al. Direct determination of diploid genome sequences. Genome Res. 2017;27(5):757–767. DOI: 10.1101/gr.214874.116

[74]

Weisenfeld N.I., Kumar V., Shah P., et al. Direct determination of diploid genome sequences // Genome Res. 2017. Vol. 27. No. 5. P. 757–767. DOI: 10.1101/gr.214874.116

[75]

Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–1125. DOI: 10.1038/nbt.2727

[76]

Burton J.N., Adey A., Patwardhan R.P., et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions // Nat Biotechnol. 2013. Vol. 31. No. 12. P. 1119–1125. DOI: 10.1038/nbt.2727

[77]

Vollger MR, Logsdon GA, Audano PA, et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Annals of Human Genetics. 2020;84(2):125–140. DOI: 10.1111/ahg.12364

[78]

Vollger M.R., Logsdon G.A., Audano P.A., et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads // Annals of Human Genetics. 2020. Vol. 84. No. 2. P. 125–140. DOI: 10.1111/ahg.12364

[79]

Rhie A, McCarthy SA, Fedrigo O, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592(7856):737–746. DOI: 10.1038/s41586-021-03451-0

[80]

Rhie A., McCarthy S.A., Fedrigo O., et al. Towards complete and error-free genome assemblies of all vertebrate species // Nature. 2021. Vol. 592. No. 7856. P. 737–746.

[81]

Convention on Biological Diversity [Internet]. Convention on Biological Diversity [cited 2020 Sep 21]. Available from: https://www.cbd.int

[82]

Convention on Biological Diversity [Internet]. Convention on Biological Diversity [дата обращения: 21.09.2020]. Доступ по ссылке: https://www.cbd.int

[83]

Hoban S, Bruford M, D’Urban Jackson J, et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv. 2020;248:108654. DOI: 10.1016/j.biocon.2020.108654

[84]

Hoban S., Bruford M., D’Urban Jackson J., et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved // Biological Conservation. 2020. Vol. 248. DOI: 10.1016/j.biocon.2020.108654

[85]

Warr A, Robert C, Hume D, et al. Exome Sequencing: Current and Future Perspectives. G3: 2015;5(8):1543–1550. DOI: 10.1534/g3.115.018564

[86]

Warr A., Robert C., Hume D., et al. Exome Sequencing: Current and Future Perspectives // G3. 2015. Vol. 5. No. 8. P. 1543–1550. DOI: 10.1534/g3.115.018564

[87]

Lowry DB, Hoban S, Kelley JL, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17(2):142–152. DOI: 10.1111/1755-0998.12635

[88]

Lowry D.B., Hoban S., Kelley J.L., et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation // Mol Ecol Resour. 2017. Vol. 17. No. 2. P. 142–152. DOI: 10.1111/1755-0998.12635

[89]

Illumina. Microarray Kits [Internet]. Illumina microarray lits. 2020 [cited 2020 Aug 22]. Available from: https://www.illumina.com/products/by-type/microarray-kits.html

[90]

Illumina. Microarray Kits [Internet]. Illumina microarray lits. 2020 [дата обращения: 22.09.2020]. Доступ по ссылке: https://www.illumina.com/products/by-type/microarray-kits.html

[91]

McVean GA, Altshuler DM, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. DOI: 10.1038/nature11632

[92]

McVean G.A., Altshuler D.M., Durbin R.M., et al. An integrated map of genetic variation from 1,092 human genomes // Nature. 2012. Vol. 491. No. 7422. P. 56–65. DOI: 10.1038/nature11632

[93]

Bijlsma R, Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments. Evol Appl. 2012;5(2):117–129. DOI: 10.1111/j.1752-4571.2011.00214.x

[94]

Bijlsma R., Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments // Evol Appl. 2012. Vol. 5. No. 2. P. 117–129. DOI: 10.1111/j.1752-4571.2011.00214.x

[95]

Leroy G, Carroll EL, Bruford MW, et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl. 2017;11(7):1066–1083. DOI: 10.1111/eva.12564

[96]

Leroy G., Carroll E.L., Bruford M.W., et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern // Evol Appl. 2017. Vol. 11. No. 7. P. 1066–1083. DOI: 10.1111/eva.12564

[97]

Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10(11):783–796. DOI: 10.1038/nrg2664

[98]

Charlesworth D., Willis J.H. The genetics of inbreeding depression // Nat Rev Genet. 2009. Vol. 10. No. 11. P. 783–796. DOI: 10.1038/nrg2664

[99]

Frankham R, Ballou JD, Eldridge MDB, et al. Predicting the Probability of Outbreeding Depression. Conserv Biol. 2011;25(3):465–475. DOI: 10.1111/j.1523-1739.2011.01662.x

[100]

Frankham R., Ballou J.D., Eldridge M.D.B., et al. Predicting the Probability of Outbreeding Depression // Conserv Biol. 2011. Vol. 25. No. 3. P. 465–475. DOI: 10.1111/j.1523-1739.2011.01662.x

[101]

Gautschi B, Müller JP, Schmid B, et al. Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity. 2003;91(1):9–16. DOI: 10.1038/sj.hdy.6800278

[102]

Gautschi B., Müller J.P., Schmid B., et al. Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population // Heredity. 2003. Vol. 91. No. 1. P. 9–16. DOI: 10.1038/sj.hdy.6800278

[103]

McLennan EA, Gooley RM, Wise P, et al. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conserv Genet. 2018;19(2):439–450. DOI: 10.1007/s10592-017-1017-8

[104]

McLennan E.A., Gooley R.M., Wise P., et al. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii) // Conserv Genet. 2018. Vol. 19. No. 2. P. 439–350. DOI: 10.1007/s10592-017-1017-8

[105]

Gooley RM, Hogg CJ, Belov K, et al. The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zool. 2018;3(1):2. DOI: 10.1186/s40850-017-0026-x

[106]

Gooley R.M., Hogg C.J., Belov K., et al. The effects of group versus intensive housing on the retention of genetic diversity in insurance populations // BMC Zool. 2018. Vol. 3. No. 1. P. 2. DOI: 10.1186/s40850-017-0026-x

[107]

Steiner CC, Putnam AS, Hoeck PEA, et al. Conservation Genomics of Threatened Animal Species. Annu Rev Anim Biosci. 2013;1(1):261–281. DOI: 10.1146/annurev-animal-031412-103636

[108]

Steiner C.C., Putnam A.S., Hoeck P.E.A., et al. Conservation Genomics of Threatened Animal Species // Annu Rev Anim Biosci. 2013. Vol. 1. No. 1. P. 261–281. DOI: 10.1146/annurev-animal-031412-103636

[109]

Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, et al. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012;13(1):10. DOI: 10.1186/1471-2156-13-10

[110]

Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., et al. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition // BMC Genet. 2012. Vol. 13. No. 1. P. 10. DOI: 10.1186/1471-2156-13-10

[111]

Zhu L, Deng C, Zhao X, et al. Endangered Père David’s deer genome provides insights into population recovering. Evol Appl. 2018;11(10):2040–2053. DOI: 10.1111/eva.12705

[112]

Zhu L., Deng C., Zhao X., et al. Endangered Père David’s deer genome provides insights into population recovering // Evol Appl. 2018. Vol. 11. No. 10. P. 2040–2053. DOI: 10.1111/eva.12705

[113]

Bosse M, Megens H-J, Madsen O, et al. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Res. 2015;25(7):970–981. DOI: 10.1101/gr.187039.114

[114]

Bosse M., Megens H.-J., Madsen O., et al. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations // Genome Res. 2015. Vol. 25. No. 7. P. 970–981. DOI: 10.1101/gr.187039.114

[115]

Hoban S, Gaggiotti O, ConGRESS Consortium, et al. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. O’Hara RB, editor. Methods Ecol Evol. 2013;4(3):299–303. DOI: 10.1111/2041-210x.12025

[116]

Hoban S., Gaggiotti O., ConGRESS Consortium, et al. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. O’Hara RB, editor // Methods Ecol Evol. 2013. Vol. 4. No. 3. P. 299–303. DOI: 10.1111/2041-210x.12025

[117]

Bashalkhanov S, Pandey M, Rajora OP. A simple method for estimating genetic diversity in large populations from finite sample sizes. BMC Genet. 2009;10(1):84. DOI: 10.1186/1471-2156-10-84

[118]

Bashalkhanov S., Pandey M., Rajora O.P. A simple method for estimating genetic diversity in large populations from finite sample sizes // BMC Genet. 2009. Vol. 10. No. 1. P. 84. DOI: 10.1186/1471-2156-10-84

[119]

A reference standard for genome biology. Nat Biotechnol. 2018;36(12):1121–1121. DOI: 10.1038/nbt.4318

[120]

A reference standard for genome biology // Nature Biotechnology. 2018. Vol. 36. No. 12. P. 1121–1121. DOI: 10.1038/nbt.4318

[121]

Groves CP, Cotterill FPD, Gippoliti S, et al. Species definitions and conservation: a review and case studies from African mammals. Conserv Genet. 2017;18(6):1247–1256. DOI: 10.1007/s10592-017-0976-0

[122]

Groves C.P., Cotterill F.P.D., Gippoliti S., et al. Species definitions and conservation: a review and case studies from African mammals // Conserv Genet. 2017. Vol. 18. No. 6. P. 1247–1256. DOI: 10.1007/s10592-017-0976-0

[123]

Ryder OA. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution. 1986;(1):9–10. DOI: 10.1016/0169-5347(86)90059-5

[124]

Ryder O.A. Species conservation and systematics: the dilemma of subspecies // Trends in Ecology and Evolution. 1986. No. 1. P. 9–10. DOI: 10.1016/0169-5347(86)90059-5

[125]

Frankham R, Ballou JD, Dudash MR, et al. Implications of different species concepts for conserving biodiversity. Biological Conservation. 2012;153:25–31. DOI: 10.1016/j.biocon.2012.04.034

[126]

Frankham R, Ballou JD, Dudash MR, et al. Implications of different species concepts for conserving biodiversity // Biol Conserv. 2012. Vol. 153. P. 25–31. DOI: 10.1016/j.biocon.2012.04.034

[127]

Supple MA, Shapiro B. Conservation of biodiversity in the genomics era. Genome Biol. 2018;19(1):131. DOI: 10.1186/s13059-018-1520-3

[128]

Supple M.A., Shapiro B. Conservation of biodiversity in the genomics era // Genome Biol. 2018. Vol. 19. No. 1. P. 131. DOI: 10.1186/s13059-018-1520-3

[129]

Funk WC, McKay JK, Hohenlohe PA, et al. Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution. 2012;27(9):489–496. DOI: 10.1016/j.tree.2012.05.012

[130]

Funk W.C., McKay J.K., Hohenlohe P.A., et al. Harnessing genomics for delineating conservation units // Trends in Ecology & Evolution. 2012. Vol. 27. No. 9. P. 489–496. DOI: 10.1016/j.tree.2012.05.012

[131]

Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLOS Genetics. 2006;2(12):e190. DOI: 10.1371/journal.pgen.0020190

[132]

Patterson N., Price A.L., Reich D. Population Structure and Eigenanalysis // PLOS Genetics. 2006. Vol. 2. No. 12. P. e190. DOI: 10.1371/journal.pgen.0020190

[133]

Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;(155):945–959. DOI: 10.1093/genetics/155.2.945

[134]

Pritchard J.K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data // Genetics. 2000. No. 155. P. 945–959. DOI: 10.1093/genetics/155.2.945

[135]

Guillot G, Mortier F, Estoup A. Geneland: a computer package for landscape genetics. Molecular Ecology Notes. 2005;5(3):712–715. DOI: 10.1111/j.1471-8286.2005.01031.x

[136]

Guillot G., Mortier F., Estoup A. Geneland: a computer package for landscape genetics // Molecular Ecology Notes. 2005. Vol. 5. No. 3. P. 712–715. DOI: 10.1111/j.1471-8286.2005.01031.x

[137]

Kinoshita E, Abramov AV, Soloviev VA, et al. Hybridization between the European and Asian badgers (Meles, Carnivora) in the Volga-Kama Region, revealed by analyses of maternally, paternally and biparentally inherited genes. Mammalian Biology. 2019;94:140–148. DOI: 10.1016/j.mambio.2018.05.003

[138]

Kinoshita E., Abramov A.V., Soloviev V.A., et al. Hybridization between the European and Asian badgers (Meles, Carnivora) in the Volga-Kama Region, revealed by analyses of maternally, paternally and biparentally inherited genes // Mammalian Biology. 2019. Vol. 94. P. 140–148. DOI: 10.1016/j.mambio.2018.05.003

[139]

Hedrick PW. Conservation Genetics and North American Bison (Bison bison). J Hered. 2009;100(4):411–420. DOI: 10.1093/jhered/esp024

[140]

Hedrick P.W. Conservation Genetics and North American Bison (Bison bison) // J Hered. 2009. Vol. 100. No. 4. P. 411–420. DOI: 10.1093/jhered/esp024

[141]

Arakelyan MS. Mikroehvolyutsionnye protsessy v simpatricheskikh populyatsiyakh nekotorykh vidov reptilii Respubliki Armeniya i sopredel’nykh territorii [PhD Thesis]. NAN RA; 2012. (In Russ.)

[142]

Аракелян М.С. Микроэволюционные процессы в симпатрических популяциях некоторых видов рептилий Республики Армения и сопредельных территорий [PhD Thesis]. НАН РА, 2012.

[143]

Wayne RK, Shaffer HB. Hybridization and endangered species protection in the molecular era. Molecular Ecology. 2016;25(11): 2680–2689. DOI: 10.1111/mec.13642

[144]

Wayne R.K., Shaffer H.B. Hybridization and endangered species protection in the molecular era // Molecular Ecology. 2016. Vol. 25. No. 11. P. 2680–2689. DOI: 10.1111/mec.13642

[145]

Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493–496. DOI: 10.1038/nature10231

[146]

Li H., Durbin R. Inference of human population history from individual whole-genome sequences // Nature. 2011. Vol. 475. No. 7357. P. 493–496. DOI: 10.1038/nature10231

[147]

Noskova E, Ulyantsev V, Koepfli K-P, et al. GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data. Gigascience. 2020;9(3): giaa005. DOI: 10.1093/gigascience/giaa005

[148]

Noskova E., Ulyantsev V., Koepfli K.-P., et al. GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data // Gigascience. 2020. Vol. 9. No. 3. ID giaa005. DOI: 10.1093/gigascience/giaa005

[149]

McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360(1459):1387–1393. DOI: 10.1098/rstb.2005.1673

[150]

McVean G.A.T., Cardin N.J. Approximating the coalescent with recombination // Philosophical Transactions of the Royal Society B: Biological Sciences. 2005. Vol. 360. No. 1459. P. 1387–1393. DOI: 10.1098/rstb.2005.1673

[151]

Nielsen R. Estimation of Population Parameters and Recombination Rates From Single Nucleotide Polymorphisms. Genetics. 2000;154(2):931–942. DOI: 10.1093/genetics/154.2.931

[152]

Nielsen R. Estimation of Population Parameters and Recombination Rates From Single Nucleotide Polymorphisms // Genetics. 2000. Vol. 154. No. 2. P. 931–942. DOI: 10.1093/genetics/154.2.931

[153]

McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. DOI: 10.1186/s13059-016-0974-4

[154]

McLaren W., Gil L., Hunt S.E., et al. The Ensembl Variant Effect Predictor // Genome Biol. 2016. Vol. 17. No. 1. P. 122. DOI: 10.1186/s13059-016-0974-4

[155]

Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6(2):80–92. DOI: 10.4161/fly.19695

[156]

Cingolani P., Platts A., Wang L.L., et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff // Fly. 2012. Vol. 6. No. 2. P. 80–92. DOI: 10.4161/fly.19695

[157]

Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814. DOI: 10.1093/nar/gkg509

[158]

Ng P.C., Henikoff S. SIFT: predicting amino acid changes that affect protein function // Nucleic Acids Res. 2003. Vol. 31. No. 13. P. 3812–3814. DOI: 10.1093/nar/gkg509

[159]

Santymire RM, Lonsdorf EV, Lynch CM, et al. Inbreeding causes decreased seminal quality affecting pregnancy and litter size in the endangered black-footed ferret. Anim Conserv. 2019;22(4):331–340. DOI: 10.1111/acv.12466

[160]

Santymire R.M., Lonsdorf E.V., Lynch C.M., et al. Inbreeding causes decreased seminal quality affecting pregnancy and litter size in the endangered black-footed ferret // Anim Conserv. 2019. Vol. 22. No. 4. P. 331–40. DOI: 10.1111/acv.12466

[161]

Ruiz-Lopez MJ, Evenson DP, Espeso G, et al. High Levels of DNA Fragmentation in Spermatozoa Are Associated with Inbreeding and Poor Sperm Quality in Endangered Ungulates. Biol Reprod. 2010;83(3):332–338. DOI: 10.1095/biolreprod.110.084798

[162]

Ruiz-Lopez M.J., Evenson D.P., Espeso G., et al. High Levels of DNA Fragmentation in Spermatozoa Are Associated with Inbreeding and Poor Sperm Quality in Endangered Ungulates // Biol Reprod. 2010. Vol. 83. No. 3. P. 332–338. DOI: 10.1095/biolreprod.110.084798

[163]

He X, Johansson ML, Heath DD. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv Biol. 2016;30(5):1010–1018. DOI: 10.1111/cobi.12674

[164]

He X., Johansson M.L., Heath D.D. Role of genomics and transcriptomics in selection of reintroduction source populations // Conserv Biol. 2016. Vol. 30. No. 5. P. 1010–1018. DOI: 10.1111/cobi.12674

[165]

Phelps J, Webb EL, Bickford D, et al. Boosting CITES. Science. 2010;330(6012):1752–1753. DOI: 10.1126/science.1195558

[166]

Phelps J., Webb E.L., Bickford D., et al. Boosting CITES // Science. 2010. Vol. 330. No. 6012. P. 1752–1753. DOI: 10.1126/science.1195558

[167]

Koepfli K-P, Paten B, O’Brien SJ. The Genome 10K Project: A Way Forward. Annual Review of Animal Biosciences. 2015;3(1):57–111. DOI: 10.1146/annurev-animal-090414-014900

[168]

Koepfli K.-P., Paten B., O’Brien S.J. The Genome 10K Project: A Way Forward // Annual Review of Animal Biosciences. 2015. Vol. 3. No. 1. P. 57–111. DOI: 10.1146/annurev-animal-090414-014900

[169]

Nadachowska-Brzyska K, Burri R, Smeds L, et al. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25(5):1058–1072. DOI: 10.1111/mec.13540

[170]

Nadachowska-Brzyska K., Burri R., Smeds L., et al. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers // Mol Ecol. 2016. Vol. 25. No. 5. P. 1058–1072. DOI: 10.1111/mec.13540

[171]

Animal Genome Size Database [Internet] [cited 2020 Aug 14]. Available from: http://www.genomesize.com/

[172]

Animal Genome Size Database [Internet] [дата обращения: 14.08.2020]. Доступ по ссылке: http://www.genomesize.com/

[173]

Graphodatsky A, Perelman P, O’Brien SJ. Atlas of Mammalian Chromosomes. John Wiley & Sons, Incorporated; 2020. DOI: 10.1002/9781119418061

[174]

Graphodatsky A., Perelman P., O’Brien S.J. Atlas of Mammalian Chromosomes. John Wiley & Sons, Incorporated; 2020. DOI: 10.1002/9781119418061

[175]

Graphodatsky AS. Conserved and variable elements of mammalian chromosomes. In: Cytogenetics of animals. Oxon, UK: CAB International Press; 1989. P. 95–124.

[176]

Graphodatsky A.S. Conserved and variable elements of mammalian chromosomes. In: Cytogenetics of animals. Oxon, UK: CAB International Press; 1989. P. 95–124.

[177]

Wang O, Chin R, Cheng X, et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 2019;29(5):798–808. DOI: 10.1101/gr.245126.118

[178]

Wang O., Chin R., Cheng X., et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly // Genome Res. 2019. Vol. 29. No. 5. P. 798–808. DOI: 10.1101/gr.245126.118

[179]

Lewin HA, Graves JAM, Ryder OA, et al. Precision nomenclature for the new genomics. Gigascience. 2019;8(8): giz086. DOI: 10.1093/gigascience/giz086

[180]

Lewin H.A., Graves J.A.M., Ryder O.A., et al. Precision nomenclature for the new genomics // Gigascience. 2019. Vol. 8. No. 8. ID giz086. DOI: 10.1093/gigascience/giz086

[181]

NCBI. NCBI Genome [Internet] [cited 2020 Aug 10]. Available from: https://www.ncbi.nlm.nih.gov/genome/

[182]

NCBI. NCBI Genome [Internet] [дата обращения: 10.08.2020]. Доступ по ссылке: https://www.ncbi.nlm.nih.gov/genome/

[183]

Vertebrate Genomes Project. GenomeArk [Internet] [cited 2020 Aug 10]. Available from: https://vgp.github.io/genomeark/

[184]

Vertebrate Genomes Project. GenomeArk [Internet] [дата обращения: 10.08.2020]. Available from: https://vgp.github.io/genomeark/

[185]

DNAzoo. DNAzoo [Internet]. DNA Zoo [cited 2020 Aug 10]. Available from: https://www.dnazoo.org/assemblies

[186]

DNAzoo. DNAzoo [Internet]. DNA Zoo [дата обращения: 10.08.2020]. Доступ по ссылке: https://www.dnazoo.org/assemblies

[187]

The Cost of Sequencing a Human Genome [Internet]. Genome.gov. [cited 2020 Aug 28]. Available from: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

[188]

The Cost of Sequencing a Human Genome [Internet]. Genome.gov [дата обращения: 28.08.2020]. Доступ по ссылке: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

[189]

Santymire R. Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reprod Fertil Dev. 2016;28(8):1097. DOI: 10.1071/RD15461

[190]

Santymire R. Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes) // Reprod Fertil Dev. 2016. Vol. 28. No. 8. ID1097. DOI: 10.1071/RD15461

[191]

Black-Footed Ferret | Revive & Restore [Internet] [cited 2020 Aug 28]. Available from: https://reviverestore.org/projects/black-footed-ferret/

[192]

Black-Footed Ferret | Revive & Restore [Internet] [дата обращения: 28.08.2020]. Доступ по ссылке: https://reviverestore.org/projects/black-footed-ferret/

[193]

Kaebnick GE, Jennings B. De-extinction and Conservation. Hastings Center Report. 2017;47(S2): S2–4. DOI: 10.1002/hast.728

[194]

Kaebnick G.E., Jennings B. De-extinction and Conservation // Hastings Center Report. 2017. Vol. 47. No. S2. P. S2–4. DOI: 10.1002/hast.728

Funding

РФФИRFBR(19-14-50532)

AI Summary AI Mindmap
PDF (2244KB)

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/